Skip to main content
Log in

Research and Optimization of the Synthesis of GdF3:Tb X-Ray Phosphors for X-Ray Photodynamic Therapy

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: GdF3:Tb nanosized phosphors were synthesized by the sol–gel and hydrothermal methods. Directed crystallite growth toward the (020) and (210) crystallographic planes was revealed. Methods: The chemical trap method was used to explore the efficiency of reactive oxygen production of the GdF3:Tb–Rose Bengal photosensitizer system. Results and Discussion: It was shown that the phosphors synthesized by the hydrothermal method have a smaller particle size and a higher luminescence intensity compared to those synthesized by the sol–gel method. Due to their luminescent characteristics and particle size, the GdF3:Tb nanosized phosphors synthesized by the hydrothermal method are suitable for use, in combination with the Rose Bengal photosensitizer, in drug formulations for X-ray photodynamic therapy of oncological diseases. Conclusions: The addition of the GdF3:Tb nanosized phosphors, synthesized by the hydrothermal method, significantly (by 17%) increases the production of reactive oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Lee, C.-N., Hsu, R., Chen, H., and Wong, T.-W., Molecules, 2020, vol. 25, no. 21, p. 5195. https://doi.org/10.3390/molecules25215195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Correia, J.H., Rodrigues, J.A., Pimenta, S., Dong, T., and Yang, Z., Pharmaceutics, 2021, vol. 13, no. 9, p. 1332. https://doi.org/10.3390/pharmaceutics13091396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitton, D. and Ackroyd, R., Photodiagnosis Photodyn. Ther., 2008, vol. 5, no. 2, pp. 103–111. https://doi.org/10.1016/j.pdpdt.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Dolmans, D.E.J.G.J., Fukumura, D., and Jain, R.K., Nature Rev. Cancer, 2003, vol. 3, no. 5, pp. 380–387. https://doi.org/10.1038/nrc1071

    Article  CAS  Google Scholar 

  5. Li, X., Lee, S., and Yoon, J., Chem. Soc. Rev., 2018, vol. 47, no. 4, pp. 1174–1188. https://doi.org/10.1039/C7CS00594F

    Article  CAS  PubMed  Google Scholar 

  6. Donnelly, R.F., McCarron, P.A., and Tunney, M.M., Microbiol. Res., 2008, vol. 163, no. 1, pp. 1–12. https://doi.org/10.1016/j.micres.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  7. Kinsella, T.J., Colussi, V.C., Oleinick, N.L., and Sibata, C.H., Expert Opin. Pharmacother., 2001, vol. 2, no. 6, pp. 917–927. https://doi.org/10.1517/14656566.2.6.917

    Article  PubMed  Google Scholar 

  8. Allison, R.R. and Moghissi, K., Clin. Endosc., 2013, vol. 46, no. 1, pp. 24–29. https://doi.org/10.5946/ce.2013.46.1.24

    Article  PubMed  PubMed Central  Google Scholar 

  9. Castano, A.P., Mroz, P., and Hamblin, M.R., Nature Rev. Cancer, 2006, vol. 6, no. 7, pp. 535–545. https://doi.org/10.1038/nrc1894

    Article  CAS  Google Scholar 

  10. Plaetzer, K., Berneburg, M., Kiesslich, T., and Maisch, T., BioMed Res. Int., 2013, vol. 2013, pp. 1–3. https://doi.org/10.1155/2013/161362

    Article  CAS  Google Scholar 

  11. Yoo, S.W., Oh, G., Ahn, J.C., and Chung, E., Biomedicines, 2021, vol. 9, no. 2, p. 113. https://doi.org/10.3390/biomedicines9020113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calzavara-Pinton, P.G., Rossi, M.T., Aronson, E., and Sala, R., Photochem. Photobiol. Sci., vol. 12, Part 1, no. 1, pp. 148–157. https://doi.org/10.1039/c2pp25124h

  13. Stender, I.-M., Na, R., Fogh, H., Gluud, C., and Wulf, H.C., Lancet, 2000, vol. 355, no. 9208, pp. 963–966. https://doi.org/10.1016/S0140-6736(00)90013-8

    Article  CAS  PubMed  Google Scholar 

  14. Shin, H.T., Kim, J.H., Shim, J., Lee, J.H., Lee, D.Y., Lee, J.H., and Yang, J.M., J. Dermatol. Treat., 2015, vol. 26, no. 3, pp. 246–251. https://doi.org/10.3109/09546634.2014.933163

    Article  CAS  Google Scholar 

  15. Tandon, Y.K., Yang, M.F., and Baron, E.D., Photoimmunol. Photomed., 2008, vol. 24, no. 5, pp. 222–230. https://doi.org/10.3390/ijms23179845

    Article  CAS  Google Scholar 

  16. Makuch, S., Dróżdż, M., Makarec, A., Ziółkowski, P., and Woźniak, M., Int. J. Mol. Sci., 2022, vol. 23, no. 17, p. 9845. https://doi.org/10.3390/ijms23179845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Comacchi, C., Bencini, P.L., Galimberti, M.G., Cappugi, P., and Torchia, D., Plast. Reconst. Surg., 2012, vol. 129, no. 6, pp. 1012e–1014e. https://doi.org/10.1097/PRS.0b013e31824f00cc

    Article  CAS  Google Scholar 

  18. Van Dijk, E.H.C., Fauser, S., Breukink, M.B., BlancoGaravito, R., Groenewoud, J.M.M., Keunen, J.E.E., Peters, P.J.H., Dijkman, G., Souied, E.H., MacLaren, R.E., Querques, G., Downes, S.M., Hoyng, C.B., and Boon, C.J.F., Ophthalmology, 2018, vol. 125, no. 10, pp. 1547–1555. https://doi.org/10.1016/j.ophtha.2018.06.038

    Article  PubMed  Google Scholar 

  19. Houthoofd, S., Vuylsteke, M., Mordon, S., and Fourneau, I., Photodiagnosis Photodyn. Ther., 2020, vol. 29, p. 101568. https://doi.org/10.1016/j.pdpdt.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  20. Huang, Z., Li, L., Wang, H., Wang, X., Yuan, K., Meyers, A., Yang, L., and Hetzel, F.W., J. Innov. Opt. Health Sci., 2009, vol. 2, no. 1, pp. 73–92. https://doi.org/10.1002/adma.201200650

    Article  CAS  Google Scholar 

  21. Konopka, K. and Goslinski, T., J. Dent. Res., 2007, vol. 86, no. 8, pp. 694–707. https://doi.org/10.1177/154405910708600803

    Article  CAS  PubMed  Google Scholar 

  22. Castano, A.P., Demidova, T.N., and Hamblin, M.R., Photodiagnosis Photodyn. Ther., 2004, vol. 1, no. 4, pp. 279–293. https://doi.org/10.1016/S1572-1000(05)00007-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakhmetyev, V.V., Minakova, T.S., Mjakin, S.V., Lebedev, L.A., Vlasenko, A.B., Nikandrova, A.A., Ekimova, I.A., Eremina, N.S., Sychov, M.M., and Ringuede, A., Eur. J. Nanomed., 2016, vol. 8, no. 4, pp. 173–184. https://doi.org/10.1515/ejnm-2016-0020

    Article  CAS  Google Scholar 

  24. Cazaux, J., J. Microsc., 1997, vol. 188, no. 2, pp. 106–124. https://doi.org/10.1046/j.1365-2818.1997.2550812.x

    Article  CAS  Google Scholar 

  25. Liaparinos, P., Michail, C., Valais, I., Fountos, G., Karabotsos, A., and Kandarakis, I., Sensors, 2022, vol. 22, no. 22, p. 8702. https://doi.org/10.3390/s22228702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, T., Huajun, L., Yang, H., and Yan, C., Mater. Chem. Phys., 2004, vol. 85, no. 1, pp. 68–72. https://doi.org/10.1016/j.matchemphys.2003.12.001

    Article  CAS  Google Scholar 

  27. Ruan, S.-K., Zhou, J.-G., Zhong, A.-M., Duan, J.-F., Yang, X.-B., and Su, M.-Z., J. Alloys Compd., 1998, vols. 275–277, pp. 72–75. https://doi.org/10.1016/j.heliyon.2023.e23779

    Article  CAS  Google Scholar 

  28. Hu, Y., Liu, Q., Liu, G., and Zhou, Z., J. Alloys Compd., 2017, vol. 724, pp. 969–974. https://doi.org/10.1016/j.jallcom.2017.05.250

    Article  CAS  Google Scholar 

  29. Chen, L., Liu, Y., Lu, Z., and Huang, K., Mater. Chem. Phys., 2006, vol. 97, nos. 2–3, pp. 247–251. https://doi.org/10.1016/j.matchemphys.2005.08.024

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge St. Petersburg State University for a research project 95445540.

Author information

Authors and Affiliations

Authors

Contributions

The author R.A.A. designed the experiments; the authors P.S.U. and P.D.Z. synthesized the samples and carried out their electrochemical study; V.V.B. and P.S.U. performed writing and original draft preparation; V.V.B. and E.I.L. performed review and editing; P.D.Z done the visualization; E.I.L was responsible for project administration. All authors participated in data processing and contributed to manuscript preparation, and participated in the discussions.

Corresponding authors

Correspondence to V. V. Bakhmetev or E. I. Leonova.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustabaev, P.S., Zykova, P.D., Bakhmetev, V.V. et al. Research and Optimization of the Synthesis of GdF3:Tb X-Ray Phosphors for X-Ray Photodynamic Therapy. Russ J Bioorg Chem 50, 522–529 (2024). https://doi.org/10.1134/S1068162024020894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020894

Keywords:

Navigation