Skip to main content
Log in

Effective Microwave-Assisted Synthesis of 2-Chloro-5,6-dimethyl-3-(((substituted-benzylidene)hydrazono)methyl)-quinoline and Its Biological Assessment

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

ective: The quinoline scaffold is widely acknowledged as a critical framework for the development of novel pharmaceuticals. The derivatives of quinoline have antifungal, antibacterial, antitumor, and anticancer effects. Over the past 30 years, bacterial and fungal infections have grown significantly. Developing new infectious illness treatments is a major issue. As antimicrobials, we produced substituted 2-chloroquinoline compounds. The antimicrobial screening shows moderate activities against used microbes. Methods: By employing microwave irradiation, 2-chloro-5,6-dimethyl-3-(((substituted-benzylidene)hydrazono)methyl)quinoline can be synthesized quickly and efficiently. One-pot reaction between (E)-2-chloro-3-(hydrazonomethyl)-7,8-dimethylquinoline and substituted Carbaldehyde in glacial acetic acid and MeOH as a solvent yields the anticipated outcome. Results and Discussion: The MIC of produced compounds was determined by broth dilution. All fifteen (I–XV) synthesized compounds were evaluated for their antibacterial and antifungal activity in vitro. Compounds (I–VII), (X­–XIII), and (XIV) have greater antibacterial activity against Staphylococcus aureus and Streptococcus pyogenes Gram-positive bacteria, Compounds (IV), (VII), (XIII), (XIV), and (XV) have demonstrated effective antibacterial activity against Escherichia coli and Pseudomonas aeruginosa Gram-negative bacteria. Compounds (I), (IV), (V), and (XI) exhibited moderate antifungal activity against C. albicans, A. niger, and A. clavatus. Conclusions: A powerful one-pot approach has been designed to synthesize substituted quinolones. Microwave-assisted synthesis greatly accelerates reaction rate and reduces product impurityand shows modest in vitro antimicrobial and antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Horn, J., Marsden, S.P., Nelson, A., House, D., Weingarten, G., and Convergent, G., Org. Lett., 2008, vol. 10, pp. 4117–4120. https://doi.org/10.1021/ol8016726

    Article  CAS  PubMed  Google Scholar 

  2. Puskullu, O., Tekiner, M., and Suzen, S., Mini-Rev. Med. Chem., 2013, vol. 13, pp. 365–372. https://doi.org/10.2174/1389557511313030005

    Article  CAS  Google Scholar 

  3. O’Loughlin, J., Kehrmeyer, R., and Sims, K., Int. Biodeter. Biodeg., 1996, vol. 38, pp. 107–118. https://doi.org/10.1016/S0964-8305(96)00032-7

    Article  Google Scholar 

  4. Walle, T., Boone, M., Puyvelde, J., Combrinck, J., Smith, J., Chibale, K., Mangelinckx, S., and D’hooghe, M., Eur. J. Med.Chem., 2020, vol. 198, Article ID: 112330.

  5. https://doi.org/10.1016/j.ejmech.2020.112330

  6. Musiol, R., Serda, M., Hensel-Bielowka, S., and Polanski, J., Curr. Med. Chem., 2010, vol. 17, pp. 1960–1973. https://doi.org/10.2174/092986710791163966

    Article  CAS  PubMed  Google Scholar 

  7. Panda, P., and Subhendu, C., ChemistrySelect, 2020, vol. 5, pp. 10187–10199. https://doi.org/10.1002/slct.202002790

    Article  CAS  Google Scholar 

  8. Taha, M., Sadia, S., Syahrul, I., Fazal, R., Khalid, Z., Abdul, W., Ashfaq, R., Nizam, U., and Khalid, K., Bioorg. Med. Chem., 2019, vol. 18, pp. 4081–4088. https://doi.org/10.1016/j.bmc.2019.07.035

    Article  CAS  Google Scholar 

  9. Kouznetsov, V.V., Leonor, Y., Vargas, M., Carlos, E., Puerto, G., and Marlyn, C., and Ortiz, V., New J. Chem., 2020, vol. 1, pp. 12–19.

    Article  Google Scholar 

  10. Nagargoje, Amol A., Satish, A., Madiha, S., Dnyaneshwar, S., Jaiprakash, S., Vijay, K., and Bapurao, S., Chem. Biodivers., 2020, vol. 2, pp. e1900624–e1900820.

  11. Weyesa, A. and Endale, M., RSC Adv., 2020, vol. 35, pp. 20784–20793. https://doi.org/10.1039/d0ra03763j

    Article  CAS  Google Scholar 

  12. Ramprasad, J., Vinay, S., Rama Linga, T., Supriya, B., Ramesh, U., Sridhar, B., and Srihari, P., Bioorg. Med. Chem. Lett., 2020, vol. 20, Article ID: 126671.

  13. Insuasty, D., Oscar, V., Anthony, B., Edgar, M., Juan, G., Braulio, I., Jairo, Q., Antibiotics, 2019, vol. 4, p. 239. https://doi.org/10.3390/antibiotics8040239

    Article  CAS  Google Scholar 

  14. Yadav, V., Jurnal, R., Vinita, S., Jaseela, M., Sharma, P., Sharma, K., Giri, N., Kumar, A., and Tonk, R., Chem. Bio. Drug. Des., 2022, vol. 100, pp. 389–418. https://doi.org/10.1111/cbdd.14099

    Article  CAS  Google Scholar 

  15. Awolade, P., Cele, N., Kerru, N., and Singh, P., Mol. Divers., 2021, vol. 25, pp. 2201–2218. https://doi.org/10.1007/s11030-020-10112-3

    Article  CAS  PubMed  Google Scholar 

  16. El-Shershaby, Mohamed, H., El-Gamal, K.M., Bayoumi, A., El-Adl, K., Alswah, M., EA Ahmed, H., Al-Karmalamy, A., and Abulkhair, H., New J. Chem., 2021, vol. 45, pp. 13986–14004. https://doi.org/10.1039/D1NJ02838C

    Article  CAS  Google Scholar 

  17. Elgawad, A., Hanan, Alhusseiny, S., Taman, A., Youssef, M., Mansour, B., Massoud, M., and Handousa, A., Exp. Parasitol., 2019, vol. 206, Article ID: 107756. https://doi.org/

  18. Khan, Salman, A., Asiri A., Basisi, H., Asad, M., Zayed, M., Sharma, K., and Wani, M., Bioorg. Chem., 2019, vol. 88, Article ID: 102968. https://doi.org/10.1016/j.bioorg.2019.102968

  19. Katariya, D., Shah, S., and Reddy, D., Bioorg. Chem., 2020, vol. 94, Article ID: 103406. https://doi.org/10.1016/j.bioorg.2019.103406

  20. Kayamba, F., Malimabe, T., Ademola, I., Pooe, O., Kushwaha, N., Mahlalela, M., and Robyn, L., Eur. J. Med. Chem., 2021, vol. 217, Article ID: 113330. https://doi.org/10.1016/j.ejmech.2021.113330

  21. Orozco, Dayana, Kouznetsov, V., Bermúdez, A., Méndez, L., Salgado, A., and Gómez, C., RSC Adv., 2020, vol. 10, pp. 4876–4898. https://doi.org/10.1039/C9RA09905K

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Liu, J., Dan, B., Chen, Y., Wen, S., and Cheng, G., Chem. Commun., 2020, vol. 56, pp. 4078–4081. https://doi.org/10.1039/C9CC09460A

    Article  CAS  Google Scholar 

  23. Martorana, A., Monica, G., and Lauria, A., Molecules, 2020, vol. 25, Article ID: 4279. https://doi.org/10.3390/molecules25184279

  24. Dorababu, A., ChemistrySelect, 2020, vol. 44, pp. 13902– 13915. https://doi.org/10.1002/slct.202003888

    Article  CAS  Google Scholar 

  25. Moor, L.E., Vasconcelos, T., Reis, R., Pinto, L., and Costa, T., Mini-Rev. Med. Chem., 2021, vol. 21, pp. 2209– 2226. https://doi.org/

    Article  CAS  PubMed  Google Scholar 

  26. Reddyrajula, R. and Dalimba, U., ChemistrySelect, 2019, vol. 9, pp. 2685–2693. https://doi.org/10.1002/slct.201803946

    Article  CAS  Google Scholar 

  27. Pradeep, M., Vishnuvardhan, M., and Thalari, G., Chem. Data Coll., 2021, vol. 32, Article ID: 100666. https://doi.org/10.1016/j.cdc.2021.100666

Download references

ACKNOWLEDGMENTS

The Department of Chemistry at Saurashtra University, Rajkot, India, and the Centre of Excellence (CoE), NFDD Complex, Rajkot, India, who provided the laboratory space and spectral data, respectively, are gratefully acknowledged by the authors.

Funding

The funding for this work was supported by the institution’s regular resources, and no further grants were acquired.

Author information

Authors and Affiliations

Authors

Contributions

The author NKV contributed to the writing and compilation processes of the manuscript and selected the literature data pertinent to the review topic under supervision of authors HSJ, KK, and TDB both made contributions to the literature study. Every author was present during the discussions.

Corresponding author

Correspondence to H. S. Joshi.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vegal, N.K., Bhatt, T.D., Kachhot, K. et al. Effective Microwave-Assisted Synthesis of 2-Chloro-5,6-dimethyl-3-(((substituted-benzylidene)hydrazono)methyl)-quinoline and Its Biological Assessment. Russ J Bioorg Chem 50, 239–250 (2024). https://doi.org/10.1134/S1068162024010254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024010254

Keywords:

Navigation