Skip to main content
Log in

New Coumarin-Metronidazole Composites: Synthesis, Biocompatibility, and Anti-anaerobic Bacterial Activity

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

ctive: In light of their diverse molecular features and wide range of biological activities, compounds with coumarin-based chemical structures have drawn significant scientific interest. On the other hand, despite the massive development of anti-aerobic bacterial agents, those that fight anaerobic bacteria are less advanced. Methods: In this work, 3-halomequinol derivatives were condensed via a Pechmann coupling reaction with 3-oxopentanedioic acid, affording precursors named 7-halo-6-methoxycoumarin-4-acetic acids and coded (P1–P4). These were esterified with metronidazole by thionyl chloride to give the four new coumarin-metronidazole composites coded (COU–MTZ1COU–MTZ4). The structural conformation of these composites and their corresponding precursors was determined by analyzing the spectra acquired from FT-IR, 1H NMR, and 13C NMR spectrophotometers. The anti-anaerobic bacterial activity was assessed by determining the composites’ inhibitory impact against four strains of pathogenic bacteria using broth dilution as a methodology. The biocompatibility profiles of the synthesized composites were spotlighted by in vitro inspection as well as by following their effects on the cellular growth of two normal-type bacterial strains and three healthy-type cell lines. Finally, the possibility of the composites being drug candidates was checked in silico by calculating their pharmacokinetic and drug-like attributes. Results: The results indicated that the new composites are biocompatible and demonstrated improved activity relative to the reference, with a golden effect attributed to the flouro-based composite. Discussion: This work reports the success in the synthesis and characterization of four (COU–MTZ) composites and their precursors. The synthetic composites showed more promising anti-anaerobic bacterial activity than the parent drug, with better theoretical aqueous solubility, intestinal absorption, and association with plasma proteins. Concerning the biocompatibility study, the synthetic composites did not demonstrate any obvious negative impact on the cellular growth of two normal-type bacterial strains and three healthy-type cell lines. Conclusions: It is concluded that the conjugation of metronidazole with the synthesized coumarins can improve its lipophilicity and consequently the candidate’s penetration into the test anaerobic pathogens, affording a promising synthon template for advanced research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Leitsch, D., Parasitology, 2019, vol. 146, pp. 1167– 1178. https://doi.org/10.1017/S0031182017002025

    Article  CAS  PubMed  Google Scholar 

  2. Mohammed, M. and Haj, N., Iran J. Med. Sci., 2023, vol. 48, pp. 167–175. https://doi.org/10.30476/IJMS.2022.95534.2691

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gharebaghi, R., Heidary, F., Moradi, M., and Parvizi, M., Arch. Acad. Emerg. Med., 2020, vol. 8, p. e40. https://doi.org/10.2139/ssrn.3559020

  4. Aliabadi, T., Saberi, E.A., Tabatabaie, A.M., and Tahmasebi, E., Eur. J. Transl. Myol., 2022, vol. 32, p. 10813. https://doi.org/10.4081/ejtm.2022.10813

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hromada, S. and Venturelli, O.S., PLoS Biol., 2023, vol. 21, pp. e3002100. https://doi.org/10.1371/journal.pbio.3002100

  6. Mustafa, Y.F., Bashir, M.K., Oglah, M.K., Khalil, R.R., and Mohammed, E.T., NeuroQuantology, 2021, vol. 19, pp. 129–138. https://doi.org/10.14704/nq.2021.19.6.NQ21078

    Article  Google Scholar 

  7. Mustafa, Y.F., Khalil, R.R., Mohammed, E.T., Bashir, M.K., and Oglah, M.K., Arch. Razi Inst., 2021, vol. 76, pp. 1297–1305. https://doi.org/10.22092/ari.2021.356100.1776

    Article  Google Scholar 

  8. Mustafa, Y.F. and Abdulaziz, N.T., NeuroQuantology, 2021, vol. 19, pp. 175–186. https://doi.org/10.14704/nq.2021.19.7.NQ21101

    Article  Google Scholar 

  9. Raya, I., Chupradit, S., Kadhim, M.M., Mahmoud, M.Z., Jalil, A.T., Surendar, A., Ghafel, S.T., Mustafa, Y.F., and Bochvar, A.N., Chinese Phys. B, 2022, vol. 31, p. 016401. https://doi.org/10.1088/1674-1056/ac3655

    Article  ADS  Google Scholar 

  10. Mahmood, A.A.J., Mustafa, Y.F., and Abdulstaar, M., Int. Med. J. Malaysia, 2014, vol. 13, pp. 3–12. https://doi.org/10.31436/imjm.v13i1.486

    Article  Google Scholar 

  11. Mustafa, Y.F., Zain Al-Abdeen, S.H., Khalil, R.R., and Mohammed, E.T., Results Chem., 2023, vol. 5, p. 100942. https://doi.org/10.1016/j.rechem.2023.100942

    Article  CAS  Google Scholar 

  12. Mustafa, Y.F., Kasim, S.M., Al-Dabbagh, B.M., and Al-Shakarchi, W., Appl. Nanosci., 2023, vol. 13, pp. 1095–1102. https://doi.org/10.1007/s13204-021-01873-w

    Article  CAS  ADS  Google Scholar 

  13. Kasim, S.M., Abdulaziz, N.T., and Mustafa, Y.F., J. Med. Chem. Sci., 2022, vol. 5, pp. 546–560. https://doi.org/10.26655/JMCHEMSCI.2022.4.10

    Article  CAS  Google Scholar 

  14. Abdulaziz, N.T., and Mustafa, Y.F., Int. J. Drug Deliv. Technol., 2022, vol. 12, pp. 239–247. https://doi.org/10.25258/ijddt.12.1.45

    Article  Google Scholar 

  15. Mohammed, E.T., Khalil, R.R., and Mustafa, Y.F., J. Med. Chem. Sci., 2022, vol. 5, pp. 968–979. https://doi.org/10.26655/JMCHEMSCI.2022.6.10

    Article  CAS  Google Scholar 

  16. Jebir, R.M. and Mustafa, Y.F., Eurasian Chem. Commun., 2022, vol. 4, pp. 692–708. https://doi.org/10.22034/ecc.2022.335454.1395

    Article  CAS  Google Scholar 

  17. Jebir, R.M. and Mustafa, Y.F., J. Med. Chem. Sci., 2022, vol. 5, pp. 652–666. https://doi.org/10.26655/JMCHEMSCI.2022.5.2

    Article  CAS  Google Scholar 

  18. Waheed, S.A. and Mustafa, Y.F., J. Med. Chem. Sci., 2022, vol. 5, pp. 703–721. https://doi.org/10.26655/JMCHEMSCI.2022.5.6

    Article  CAS  Google Scholar 

  19. Jasim, S.F. and Mustafa, Y.F., J. Med. Chem. Sci., 2022, vol. 5, pp. 793–807. https://doi.org/10.26655/JMCHEMSCI.2022.5.14

    Article  CAS  Google Scholar 

  20. Mustafa, Y.F., Appl. Nanosci., 2023, vol. 13, pp. 1907– 1918. https://doi.org/10.1007/s13204-021-01872-x

    Article  CAS  ADS  Google Scholar 

  21. Mustafa, Y.F., Mohammed, E.T., and Khalil, R.R., Egypt. J. Chem., 2021, vol. 64, pp. 4461–4468. https://doi.org/10.21608/EJCHEM.2021.73699.3641

    Article  Google Scholar 

  22. Waheed, S.A. and Mustafa, YF., Eurasian Chem. Commun., 2022, vol. 4, pp. 709–724. https://doi.org/10.22034/ecc.2022.335455.1396

    Article  CAS  Google Scholar 

  23. Bashir, M.K., Mustafa, Y.F., and Oglah, M.K., Period. Tche Quim., 2020, vol. 17, pp. 871–883. https://www.tchequimica.com/arquivos_jornal/2020/36/886_Periodico36.pdf

    CAS  Google Scholar 

  24. Jasim, S.F. and Mustafa, Y.F., J. Med. Chem. Sci., 2022, vol. 5, pp. 887–899. https://doi.org/10.26655/JMCHEMSCI.2022.6.3

    Article  CAS  Google Scholar 

  25. Pilla, R., Honneffer, J., Gaschen, F.P., Guard, B.C., Barr, J.W., and Olson, E., J. Vet. Intern. Med., 2020, pp. 1853–1866. https://doi.org/10.1111/jvim.15871

  26. Suau, A., Pochart, P., and Magne, F., FEMS Microbiol. Ecol., 2010, vol. 73, pp. 601–610. https://doi.org/10.1111/j.1574-6941.2010.00916.x

    Article  CAS  PubMed  Google Scholar 

  27. Goje, O., Shay, E.O., Markwei, M., Padmanabhan, R., and Eng, C., Hum. Microbiome J., 2021, vol. 20, p. 100081. https://doi.org/10.1016/j.humic.2021.100081

    Article  CAS  Google Scholar 

  28. Burtin, P., Taddio, A., Ariburnu, O., Einarson, T.R., and Koren, G., Am. J. Obstet. Gynecol., 1995, vol. 172, pp. 525–529. https://doi.org/10.1016/0002-9378(95)90567-7

    Article  CAS  PubMed  Google Scholar 

  29. Bagga, R. and Arora, P., Front. Public Health., 2020, vol. 8, p. 225. https://doi.org/10.3389/fpubh.2020.00225

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koss, C.A., Baras, D.C., Lane, S.D., Aubry, R., Marcus, M., and Markowitz, L.E., Antimicrob. Agents Chemother., 2012, vol. 56, Article ID: 06477-11. https://doi.org/10.1128/AAC.06477-11

  31. Cheng, F., Li, W., Liu, G., and Tang, Y., Curr. Top. Med. Chem., 2013, vol. 13, pp. 1273–1289. https://doi.org/10.2174/15680266113139990033

    Article  CAS  PubMed  Google Scholar 

  32. Effinger, A., O’Driscoll, C.M., McAllister, M., and Fotaki, N., ADME Processes in Phar. Sci., 2018, pp. 301–330. https://doi.org/10.1007/978-3-319-99593-9_13

  33. Mustafa, Y.F., Oglah, M.K., Bashir, M.K., Mohammed, E.T., and Khalil, R.R., Clin. Schizophr. Relat. Psychoses, 2021, vol. 15, pp. 1–6. https://www.clinicalschizophrenia.net/articles/mutual-prodrug-of-5ethynyluracil-and-5fluorouracil-synthesis-and-pharmacokinetic-profile-84500.html

    Google Scholar 

  34. Hernandez-Gordillo, V., Koppes, A.N., Griffith, L.G., Breault, D.T., and Carrier, R.L., Biol. Engineer. Stem Cell Niches, 2017, pp. 601–615. https://doi.org/10.1016/B978-0-12-802734-9.00037-8

  35. Artursson, P., Palm, K., and Luthman, K., Adv. Drug Deliv. Rev., 2012, vol. 64, pp. 280–289. https://doi.org/10.1016/j.addr.2012.09.005

    Article  Google Scholar 

  36. Andrew, F. and Peter, P., Ustralian Prescr., 2014, vol. 37, pp. 137–139.

    Google Scholar 

  37. Zhou, S-F., Curr. Drug Metab., 2008, vol. 9, pp. 310–322.

    Article  CAS  PubMed  Google Scholar 

  38. van Booven, D., Marsh, S., McLeod, H., Carrillo, M.W., Sangkuhl, K., and Klein, T.E., Pharmacogenet. Genomics, 2010, vol. 20, pp. 277–281. https://doi.org/10.1097/FPC.0b013e3283349e84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nejres, A.M., Ali, H.K., Behnam, S.P., and Mustafa, Y.F., Syst. Rev. Pharm., 2020, vol. 11, pp. 726–732. https://doi.org/10.31838/srp.2020.6.107

    Article  CAS  Google Scholar 

  40. Ghafourian, T. and Amin, Z., Bioimpacts, 2013, vol. 3, pp. 21–27. https://doi.org/10.5681/bi.2013.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van de Waterbeemd, H. and Gifford, E., Nat. Rev. Drug Discov., 2003, vol. 2, pp. 192–204. https://doi.org/10.1038/nrd1032

    Article  CAS  PubMed  Google Scholar 

  42. Muehlbacher, M., Spitzer, G.M., Liedl, K.R., and Kornhuber, J., J. Comput. Aided Mol. Des., 2011, vol. 25, pp. 1095–1106. https://doi.org/10.1007/s10822-011-9478-1

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Mustafa, YF., NeuroQuantology, 2021, vol. 19, pp. 99–112. https://doi.org/10.14704/nq.2021.19.8.NQ21120

    Article  Google Scholar 

  44. Benet, L.Z., Hosey, C.M., Ursu, O., and Oprea, T.I., Adv. Drug Deliv. Rev., 2016, vol. 101, pp. 89–98. https://doi.org/10.1016/j.addr.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is very grateful to the University of Mosul/College of Pharmacy for their provided facilities, which helped to improve the quality of this work.

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Author YFM involved in design, synthesis, characterization, and manuscript writing.

Corresponding author

Correspondence to Yasser Fakri Mustafa.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, Y.F. New Coumarin-Metronidazole Composites: Synthesis, Biocompatibility, and Anti-anaerobic Bacterial Activity. Russ J Bioorg Chem 50, 201–210 (2024). https://doi.org/10.1134/S106816202401014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202401014X

Keywords:

Navigation