Skip to main content
Log in

Benzothiophene Schiff Bases Disrupt Cytoplasmic Membrane Integrity of Gram-Positive and -Negative Bacteria Cells

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: With the molecular formula C8H6S, benzothiophene is an appealing synthon showing a wide range of biological activities such as antifungal, antibacterial, antitumor and anticancer properties. Due to increasing concern about the resistance gained by the microorganisms against existing antimicrobial agents, our group is interested in revealing the cellular target site of these compounds. Methods: As a part of our efforts on determination of effect of antibacterial agents, in this study, we focused on the benzothiophene Schiff bases. Antibacterial activity of bis(benzo[b]thiophene-2-yl)alkylmethanimine derivatives was studied via minimum inhibitory concentration measurements. Results and Discussion: One of the compounds, compound (I) (N,N′-(propane-1,3-diyl)bis(1-(benzo[b]thiophene-2-yl))methanimine), proved to be highly active against both Gram-positives; Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Bacillus cereus; and Gram-negatives Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, Shigella flexneri. In order to reveal the effect of this compound on bacterial cytoplasmic membrane, we measured the extracellular conductivity increase upon treatment. Compound (I), showing high antibacterial activity caused a sudden increase of extracellular conductivity due to ion leakage from bacterial cells. In contrast, inactive benzothiophene derivatives did not cause any conductivity increase. Conclusions: We propose that benzothiophene Schiff base (I) disrupts bacteria cytoplasmic membrane integrity, and this action contributes to its antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Bugg, T.D., Braddick, D., Dowson, C.G., and Roper, D.I., Trends Biotechnol., 2011, vol. 29, pp. 167–173. https://doi.org/10.1016/j.tibtech.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  2. Pasquina, L.W., Santa Maria, J.P., and Walker, S., Curr. Opin. Microbiol., 2013, vol. 16, pp. 531–537. https://doi.org/10.1016/j.mib.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  3. Hancock, R.E., Trends Microbiol., 1997, vol. 5, p. 37. https://doi.org/10.1016/S0966-842X(97)81773-8

    Article  CAS  PubMed  Google Scholar 

  4. Efremov, A.A., Zykova, I.D., Senashova, V.A., Grodnitckaya, I.D., and Pashenova, N.V., Russ. J. Bioorg. Chem.,2021, vol. 47, pp. 1439–1444.

  5. Epand, R.M. and Epand, R.F., Biochim. Biophys. Acta (BBA)-Biomembranes, 2009, vol. 1788, pp. 289–294. https://doi.org/10.1016/j.bbamem.2008.08.023

    Article  CAS  PubMed  Google Scholar 

  6. Epand, R.M., Walker, C., Epand, R.F., and Magarvey, N.A., Biochim. Biophys. Acta (BBA)-Biomembranes, 2016, vol. 1858, pp. 980–987. https://doi.org/10.1016/j.bbamem.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  7. Belete, T.M., Human Microbiome J., 2019, vol. 11, p. 100052. https://doi.org/10.1016/j.humic.2019.01.001

    Article  Google Scholar 

  8. Şahal, H., İdil, Ö., Canpolat, E., and Özkan, M., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 602–609.

    Article  Google Scholar 

  9. Alagarsamy, V., Narendhar, B., Chitra, K., Sriram, D., Sarvanan, G., and Solomon, V.R., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. 1221–1229.

    Article  CAS  Google Scholar 

  10. Amirkhanov, N.V., Bardasheva, A.V., Tikunova, N.V., and Pyshnyi, D.V., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 681–690.

    Article  CAS  Google Scholar 

  11. Skrzyńska, A., Albrecht, A., and Albrecht, Ł., Adv. Synth. Cat., 2016, vol. 358, pp. 2838–2844. https://doi.org/10.1002/adsc.201600269

    Article  CAS  Google Scholar 

  12. Jordan, V.C., J. Med. Chem., 2003, vol. 46, pp. 1081–1111. https://doi.org/10.1021/jm020450x

    Article  CAS  PubMed  Google Scholar 

  13. Martorana, A., Gentile, C., Perricone, U., Piccionello, A.P., Bartolotta, R., Terenzi, A., and Lauria, A., Eur. J. Med. Chem., 2015, vol. 90, pp. 537–546. https://doi.org/10.1016/j.ejmech.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Ardiansah, B., J. Appl. Pharm. Sci., 2019, vol. 9, pp. 117–129. https://doi.org/10.7324/JAPS.2019.90816

    Article  CAS  Google Scholar 

  15. Naganagowda, G., Thanyongkit, P., and Petsom, A., J. Chil. Chem. Soc., 2012, vol. 57, pp. 1043–1047. https://doi.org/10.4067/S0717-97072012000100019

    Article  CAS  Google Scholar 

  16. Meena, V.K., Patidar, A.K., and Bhatnagar, M., J. Adv. Sci. Res., 2020, vol. 11, pp. 228–231.

    CAS  Google Scholar 

  17. Jagtap, V.A. and Agasimundin, Y.S., J. Pharm. Res., 2015, vol. 9, pp. 10–14.

    CAS  Google Scholar 

  18. Romagnoli, R., Baraldi, P.G., Carrion, M.D., Cara, C.L., Preti, D., Fruttarolo, F., and Di Cristina, A., J. Med. Chem., 2007, vol. 50, pp. 2273–2277. https://doi.org/10.1021/jm070050f

    Article  CAS  PubMed  Google Scholar 

  19. Sweidan, K., Engelmann, J., Abu Rayyan, W., Sabbah, D., Abu Zarga, M., Al-Qirim, T., and Shattat, G., Lett. Drug Des. and Discov., 2015, vol. 12, pp. 417–429.

    Article  CAS  Google Scholar 

  20. Fakhr, I.M., Radwan, M.A., El-Batran, S., ElSalam, O.M.A., and El-Shenawy, S.M., Eur. J. Med. Chem., 2009, vol. 44, pp. 1718–1725. https://doi.org/10.1016/j.ejmech.2008.02.034

    Article  CAS  PubMed  Google Scholar 

  21. Keri, R.S., Chand, K., Budagumpi, S., Balappa, S., Somappa, S., Patil, A., and Nagaraja, B.M., Eur. J. Med. Chem., 2017, vol. 138, pp. 1002–1033. https://doi.org/10.1016/j.ejmech.2017.07.038

    Article  CAS  PubMed  Google Scholar 

  22. Berrade, L., Aisa, B., Ramirez, M.J., Galiano, S., Guccione, S., Moltzau, L.R., and Aldana, I., J. Med. Chem., 2011, vol. 54, pp. 3086–3090. https://doi.org/10.1021/jm2000773

    Article  CAS  PubMed  Google Scholar 

  23. Mourey, R.J., Burnette, B.L., Brustkern, S.J., Daniels, J.S., Hirsch, J.L., Hood, W.F., and Schindler, J.F., J. Pharmacol. Exp. Ther., 2010, vol. 333, pp. 797–807. https://doi.org/10.1124/jpet.110.166173

    Article  CAS  PubMed  Google Scholar 

  24. Qin, Z., Kastrati, I., Chandrasena, R.E.P., Liu, H., Yao, P., Petukhov, P.A., and Thatcher, G.R., J. Med. Chem., 2007, vol. 50, pp. 2682–2692. https://doi.org/10.1021/jm070079j

    Article  CAS  PubMed  Google Scholar 

  25. Naganagowda, G. and Petsom, A., J. Sulfur Chem., 2011, vol. 32, pp. 223–233. https://doi.org/10.1080/17415993.2011.575943

    Article  CAS  Google Scholar 

  26. Gujjarappa, R., Kabi, A.K., Vodnala, N., Tyagi, U., Kaldhi, D., and Malakar, C.C., Nanostruct. Biomat. Mat. Horizons: From Nat. Nanomat., Swain, B.P. (Ed) Springer, Singapore, 2022 https://doi.org/10.1007/978-981-16-8399-2_9

  27. Song, D. and Ma, S., ChemMedChem, 2016, vol. 11, pp. 646–659. https://doi.org/10.1002/cmdc.201600041

    Article  CAS  PubMed  Google Scholar 

  28. Dehyaa, H.M., Ali Jabbar, R., Dhurgham, Q.S., and Hayder, K.A., J. Pharm. Neg. Results, 2022, vol. 13, pp. 893–898. https://doi.org/10.47750/pnr.2022.13.S03.137

    Article  Google Scholar 

  29. Ünver, Y., Ünlüer, D., Direkel, S., and Durdağı, S., Turkish J. Chem., 2020, vol. 44, pp. 1164–1176. https://doi.org/10.3906/kim-2004-78

    Article  CAS  Google Scholar 

  30. Bertani, G., J. Bacteriol., 1951, vol. 62, pp. 293–300. https://doi.org/10.1128/jb.62.3.293-300.1951

  31. Ergüden, B., Lett. Appl. Microbiol., 2021, vol. 73, pp. 438–445.

    Article  PubMed  Google Scholar 

  32. Bouyahya, A., Abrini, J., Dakka, N., and Bakri, Y., J. Pharm. Analysis, 2019, vol. 9, pp. 301–311. https://doi.org/10.1016/j.jpha.2019.03.001

    Article  Google Scholar 

  33. Andrade, J.M. and Estevez-Perez, M.G., Analytica Chim. Acta, 2014, vol. 838, pp. 1–12. https://doi.org/10.1016/j.aca.2014.04.057

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

The author YÜ synthesized compounds (I) and (II); the authors HBL and BE designed and performed the experiments. The authors YÜ, HBL, and BE wrote the manuscript.

Corresponding author

Correspondence to Bengü Ergüden.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergüden, B., Lüleci, H.B. & Ünver, Y. Benzothiophene Schiff Bases Disrupt Cytoplasmic Membrane Integrity of Gram-Positive and -Negative Bacteria Cells. Russ J Bioorg Chem 50, 128–137 (2024). https://doi.org/10.1134/S1068162024010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024010096

Keywords:

Navigation