Skip to main content

Advertisement

Log in

Design, 2D Qsar Studies, Molecular Docking, and Synthesis of Novel Triazole Derivatives intended as an Antifungal Agents

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of a series of triazole derivatives involved the reaction of pyridine potassium dithiocarbazate and 4-amino-5-(pyridine-4-yl)-4H-1,2,4-triazole-3-thiols derivative in dimethylformamide, formaldehyde, and appropriate aniline. Subsequently, a QSAR model was created using QSARINS to investigate the structural requirements for antifungal activities against Candida albicans. The optimal model (Model 2) was determined, featuring variables such as SHaaCH, maxHBint2, ETA_Epsilon_5, and ETA_EtaP_B_RC, with statistical values R2: 0.9846, Q2loo: 0.9774, Q2LMO: 0.9751, CCC tr: 0.9922, and PRESS cv: 0.6456. To assess binding affinity, docking of all designed compounds was conducted in AutoDock Vina using PyRx.Ink, specifically targeting the active site of Cytosolic leucyl tRNA synthetase (PDB ID: 2WFG). Compounds exhibiting favorable binding affinity were then synthesized, characterized by FT-IR and mass spectroscopy. Antifungal activity assessment using the agar well diffusion method, with amphotericin B as the standard, revealed that compounds (IIIm), (IIIo), (IIIq), (IIIr), and (IIIu) exhibited excellent activity against Candida albicans, with zone of inhibition values of 11.25 ± 0.35, 13.25 ± 0.35, 12.25 ± 0.35, and 11.25 ± 0.35 mm (500 µg/mL), respectively, compared to the standard amphotericin B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme 1.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Wu, J., Ni, T., Chai, X., Wang, T., Wang, H., Chen, J., Jin, Y., Zhang, D., Yu, S., and Jiang, Y., Eur. J. Med. Chem., 2018, vol. 143, pp. 1840–1846. https://doi.org/10.1016/j.ejmech.2017.10.081

    Article  CAS  PubMed  Google Scholar 

  2. Jiang, Z., Gu, J., Wang, C., Wang, S., Liu, N., Jiang, Y., Dong, G., Wang, Y., Liu, Y., Yao, J., and Miao, Z., Eur. J. Med. Chem., 2014, vol. 82, pp. 490–497. https://doi.org/10.1016/j.ejmech.2014.05.079

    Article  CAS  PubMed  Google Scholar 

  3. Schiller, D.S. and Fung, H.B., Clin. Ther., 2007, vol. 29, pp. 1862–1886. https://doi.org/10.1016/j.clinthera.2007.09.015

    Article  CAS  PubMed  Google Scholar 

  4. Yang, W., Yan, L., Wu, C., Zhao, X., and Tang, J., Microbiol. Res., 2014, vol. 169, pp. 803–810. https://doi.org/10.1016/j.micres.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  5. Heitman, J., Fungal Biol. Rev., 2011, vol. 25, pp. 48–60. https://doi.org/10.1016/j.fbr.2011.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Farkaš, V., Folia Microbiol., 2003, vol. 48, pp. 469–478. https://doi.org/10.1007/BF02931327

    Article  Google Scholar 

  7. Shalini, K., Kumar, N., Drabu, S., and Sharma, P.K., Beilstein J. Org. Chem., 2011, vol. 7, pp. 668–677. https://doi.org/10.3762/bjoc.7.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maertens, J., Vrebos, M., and Boogaerts, M., Eur. J. Cancer, 2001, vol. 10, pp. 56–62. https://doi.org/10.1046/j.1365-2354.2001.00241.x

    Article  CAS  Google Scholar 

  9. Vale-Silva, L.A., Goncalves, M.J., Cavaleiro, C., Salgueiro, L., and Pinto, E., Planta Med., 2010, vol. 76, pp. 882–888. https://doi.org/10.1055/s-0029-1240799

    Article  CAS  PubMed  Google Scholar 

  10. Vautier, S., Drummond, R.A., Redelinghuys, P., Murray, G.I., MacCallum, D.M., and Brown, G.D., Infect. Immun., 2012, vol. 80, pp. 4216–4222. https://doi.org/10.1128/IAI.00559-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Truss, C.O., J. Orthomol. Psychiatry, 1981, vol. 10, pp. 228–238.

    Google Scholar 

  12. Lim, C.S.Y., Rosli, R., Seow, H.F., and Chong, P.P., Eur. J. Clin. Microbiol. Infect. Dis., 2012, vol. 31, pp. 21–31. https://doi.org/10.1007/s10096-011-1273-3

    Article  PubMed  Google Scholar 

  13. Datt, M., and Sharma, A., BMC Genom., 2014, vol. 15, pp. 1–17. https://doi.org/10.1186/1471-2164-15-1069

    Article  CAS  Google Scholar 

  14. Höfs, S., Mogavero, S., and Hube, B., J. Microbiol., 2016, vol. 54, pp. 149–169. https://doi.org/10.1007/s12275-016-5514-0

    Article  CAS  PubMed  Google Scholar 

  15. Mora-Montes, H.M., Netea, M.G., Ferwerda, G., Lenardon, M.D., Brown, G.D., Mistry, A.R., Kullberg, B.J., O’Callaghan, C.A., Sheth, C.C., Odds, F.C., and Brown, A.J., Infect. Immun., 2011, vol. 79, pp. 1961–1970. https://doi.org/10.1128/IAI.01282-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng, N.X., Wang, Y., Hu, D.D., Yan, L., and Jiang, Y.Y., Virulence, 2015, vol. 6, pp. 347–361. https://doi.org/10.1080/21505594.2015.1014270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willment, J.A. and Brown, G.D., Trends Microbiol., 2008, vol. 16, pp. 27–32. https://doi.org/10.1007/978-981-15-1580-4_1

    Article  CAS  PubMed  Google Scholar 

  18. Sarkar, J., Mao, W., Lincecum Jr, T.L., Alley, M.R.K., and Martinis, S.A., FEBS Lett., 2011, vol. 585, pp. 2986–2991. https://doi.org/10.1016/j.febslet.2011.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nureki, O., Vassylyev, D.G., Tateno, M., Shimada, A., Nakama, T., Fukai, S., Konno, M., Hendrickson, T.L., Schimmel, P., and Yokoyama, S., Science, 1998, vol. 280, pp. 578–582. https://doi.org/10.1126/science.280.5363.578

    Article  CAS  PubMed  Google Scholar 

  20. Park, S.G., Schimmel, P., and Kim, S., Proc. Natl. Acad. Sci., 2008, vol. 105, pp. 11043–11049. https://doi.org/10.1073/pnas.0802862105

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim, S., Yoon, I., Son, J., Park, J., Kim, K., Lee, J.H., Park, S.Y., Kang, B.S., Han, J.M., Hwang, K.Y., and Kim, S., Cell Rep., 2021, vol. 35, Article ID: 109031. https://doi.org/10.1016/j.celrep.2021.109031

  22. Fukunaga, R. and Yokoyama, S., J. Mol. Biol., 2005, vol. 346, pp. 57–71. https://doi.org/10.1016/j.jmb.2004.11.060

    Article  CAS  PubMed  Google Scholar 

  23. Yao, P. and Fox, P.L., EMBO Mol. Med., 2013, vol. 5, pp. 332–343. https://doi.org/10.1002/emmm.201100626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, J.M., Jeong, S.J., Park, M.C., Kim, G., Kwon, N.H., Kim, H.K., Ha, S.H., Ryu, S.H., and Kim, S., Cell, 2012, vol. 149, pp. 410–424. https://doi.org/10.1016/j.cell.2012.02.044

    Article  CAS  PubMed  Google Scholar 

  25. Rock, F.L., Mao, W., Yaremchuk, A., Tukalo, M., Crépin, T., Zhou, H., Zhang, Y.K., Hernandez, V., Akama, T., Baker, S.J., and Plattner, J.J., Science, 2007, vol. 316, pp. 1759–1761. https://doi.org/10.1126/science.1142189

    Article  CAS  PubMed  Google Scholar 

  26. Hurdle, J.G., O’Neill, A.J., and Chopra, I., Antimicrob Agents Chemother., 2005, vol. 49, pp. 4821–4833. https://doi.org/10.1128/AAC.49.12.4821-4833.2005

  27. Liu, R.J., Tan, M., Du, D.H., Xu, B.S., Eriani, G., and Wang, E.D., Biochem. J., 2011, vol. 440, pp. 217–227. https://doi.org/10.1042/BJ20111177

    Article  CAS  PubMed  Google Scholar 

  28. Cappelli, C.I., Manganelli, S., Toma, C., Benfenati, E. and Mombelli, E., Mol. Inform., 2021, vol. 40, Article ID: 2000072. https://doi.org/10.1002/minf.202000072

  29. Edache, E.I., Uzairu, A., and Abechi, S.E., Br. J. Appl. Sci. Technol., 2016, vol. 13, pp. 1–20. https://doi.org/10.9734/BJAST/2016/21791

    Article  Google Scholar 

  30. Samuel, H., Uzairu, A., Mamza, P., and Oluwole Joshua, O., J. Computat. Method. Mol. Design, 2015, vol. 5, pp.106–119.

    CAS  Google Scholar 

  31. Ray, S., Mondal, S., Ray, S.D., and Roy, P.P., Med. Chem. Res., 2014, vol. 23, pp. 4436–4446. https://doi.org/10.1007/s00044-014-1019-8

    Article  CAS  Google Scholar 

  32. Gopinath, P. and Kathiravan, M.K., J. Chemom.,2019, vol. 33, Article ID: e3189. https://doi.org/10.1002/cem.3189

  33. Ramalakshmi, N., Manimegalai, P., Bhandare, R.R., Kumar, S.A., and Shaik, A.B., J. Saudi Chem. Soc., 2021, vol. 25, Article ID: 101279. https://doi.org/10.1016/j.jscs.2021.101279

  34. Waghu, F.H., Gawde, U., Gomatam, A., Coutinho, E., and Idicula-Thomas, S., Chem. Biol. Drug Des., 2020, vol. 96, pp. 1408–1417. https://doi.org/10.1111/cbdd.13749

    Article  CAS  PubMed  Google Scholar 

  35. Gramatica, P., Chirico, N., Papa, E., Cassani, S., and Kovarich, S., J. Computat. Chem., 2013, vol. 34, pp. 2121–2132. https://doi.org/10.1002/jcc.23361

    Article  CAS  Google Scholar 

  36. López-Rojas, P., Janeczko, M., Kubiński, K., Amesty, Á., Masłyk, M., and Estévez-Braun, A., Molecules, 2018, vol. 23, p. 199. https://doi.org/10.3390/molecules23010199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poonia, N., Lal, K., and Kumar, A., Res. Chem. Intermed., 2021, vol. 47, pp. 1087–1103. https://doi.org/10.1007/s11164-020-04318-1

    Article  CAS  Google Scholar 

  38. Ellouz, M., Sebbar, N.K., Fichtali, I., Ouzidan, Y., Mennane, Z., Charof, R., Mague, J.T., Urrutigoïty, M., and Essassi, E.M., Chem. Cent. J., 2018, vol. 12, pp. 1–12. https://doi.org/10.1186/s13065-018-0494-2

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express gratitude to the management of C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai, for providing the essential facilities to successfully conduct this work.

Funding

This research does not receive any specific grant from funding agencies in the public, commercial or not-for-public sectors.

Author information

Authors and Affiliations

Authors

Contributions

The authors NR and SA—selected the literature data on the review topic. The author KY—contributed to manuscript preparation. All authors participated in the discussions.

Corresponding author

Correspondence to K. Yuvarani.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. The author does not have any conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvarani, K., Ramalakshmi, N. & Arunkumar, S. Design, 2D Qsar Studies, Molecular Docking, and Synthesis of Novel Triazole Derivatives intended as an Antifungal Agents. Russ J Bioorg Chem 49 (Suppl 1), S202–S223 (2023). https://doi.org/10.1134/S1068162023080198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023080198

Keywords:

Navigation