Skip to main content
Log in

Exploration of 2-(Substituted Phenyl)-thiazolidin-4-one as Anticancer Agents

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A facile synthesis of (2-(substituted phenyl)-thiazolidin-4-one by using recyclable catalyst β-cyclodextrinSO3H has been achieved. It has been synthesized by successive three-component reaction of substituted benzaldehyde, 6/7-aminoflavone, thioglycolic acid with recyclable catalyst β-cyclodextrin-SO3H. Our research team has performed in vitro anticancer study of all synthesized compounds. Among these synthesized compounds, (IVf) and (IVn) have demonstrated significant in vitro anticancer activity. The compound (IVn) was found to be very potent to standard drug Adriamycin. Additionally, the mechanism of anticancer activity was established by examining the inhibitory activity of synthesized compounds against Human Topoisomerase II (Topo-II). The compounds (IVf) and (IVn) was found to have a good ability to inhibit Topo-II enzyme, which makes them good anticancer agents. The mechanism of anticancer activity was further confirmed by performing docking studies of compounds on Topo-II enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Scheme 2.
Fig. 2.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Ganapathy, V., Thangaraju, M., and Prasad, P.D., Pharmacol. Ther., 2009, vol. 121, pp. 29–40. https://doi.org/10.1016/j.pharmthera.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Mamishi, S., Zomorodian, K., Saadat, F., GeramiShoar, M., Tarazooie, B., and Siadati, S.A., Ann. Clin. Microbiol. Antimicrob., 2005, vol. 4, pp. 1–4. https://doi.org/10.1186/1476-0711-4-4

    Article  Google Scholar 

  3. Shoar, M., Zomorodian, K., Saadat, F., Hashemi, J., and Tarazoei, B., Pak. Med. Assoc., 2004, vol. 54, pp. 485–486. https://jpma.org.pk/PdfDownload/501

    CAS  Google Scholar 

  4. Estevez-Braun, A. and Gunzalez, G., Nat. Prod. Rep., 1997, vol. 14, pp. 465–575. https://doi.org/10.1039/np9971400465

    Article  CAS  PubMed  Google Scholar 

  5. Venugopala, K., Rashmi, V., and Odhav, B., Biomed. Res. Int., 2013, vol. 2013, Article ID: 963248. https://doi.org/10.1155/2013/963248

  6. Carmela, G., Marco, C., Francesco, L., Peter, W., PierreAlain, C., Cosimo, A., Angelo, C., and Bernard, T., J. Med. Chem., 2000, vol. 43, pp. 4747–4758. https://doi.org/10.1021/jm001028o

    Article  CAS  Google Scholar 

  7. Zhao, H., Donnelly, A.C., Kusuma, B.R., Brandt, G.E., Brown, D., Rajewski, G., Vielhauer, G., Holzbeierlein, J., Cohen, M.S., and Blagg, B.S., J. Med. Chem., 2011, vol. 54, pp. 3839–3853. https://doi.org/10.1021/jm200148p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stefanachi, A., Favia, D., Nicolotti, O., Leonetti, F., Pisani, L., Catto, M., Zimmer, C., Hartmann, W., and Carotti, A., J. Med. Chem., 2011, vol. 54, pp. 1613–1625. https://doi.org/10.1021/jm101120u

    Article  CAS  PubMed  Google Scholar 

  9. Kaminskyy, D.V., J. Org. Pharm. Chem., 2015, vol. 13, pp. 64–69. https://doi.org/10.24959/ophcj.15.819

    Article  CAS  Google Scholar 

  10. Basanagouda, M., Shivashankar, K., Kulkarni, M.V., Rasal, V.P., Patel, H., Mutha, S.S., and Mohite, A.A., Eur. J. Med. Chem., 2010, vol. 45, pp. 1151–1157. https://doi.org/10.1016/j.ejmech.2009.12.022

    Article  CAS  PubMed  Google Scholar 

  11. Hadjipavlou-Litina, D.J., Litinas, K.E., and Kontogiorgis, C., Anti-Inf. Anti Allergy Agents Med. Chem., 2007, vol. 6, pp. 293–306. https://doi.org/10.2174/187152307783219989

    Article  CAS  Google Scholar 

  12. Bailly, C., Chem. Rev., 2012, vol. 212, pp. 3611–3640. https://doi.org/10.1021/cr200325f

    Article  CAS  Google Scholar 

  13. Facompre, M., Tardy, C., Bal-Mahieu, C., Colson, P., Perez, C., Manzanares, I., Cuevas, C., and Bailly, C., Cancer Res., 2003, vol. 63, pp. 7392–7399. https://pubmed.ncbi.nlm.nih.gov/14612538/

    CAS  PubMed  Google Scholar 

  14. Wiegand, R., Wu, J., Sha, X., LoRusso, P., Heath, E., and Li, J., Biomed. Life Sci., 2009, vol. 877, pp. 1460–1464. https://doi.org/10.1016/j.jchromb.2009.03.015

    Article  CAS  Google Scholar 

  15. Patra, N., De, U., Kang, J.A., Kim, J.M., Ahn, M.Y., Lee, J., Jung, J.H., Chung, H.Y., Moon, H.R., and Kim, H.S., Eur. J. Pharmacol., 2011, vol. 658, pp. 98–107. https://doi.org/10.1016/j.ejphar.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  16. Lazaro, M.L., Willmore, E., and Austin, C.A., Mutat. Res., 2010, vol. 696, pp. 41–47. https://doi.org/10.1016/j.mrgentox.2009.12.010

    Article  CAS  Google Scholar 

  17. Cassady, J.M., Baird, W.M., and Chang, C.J., J. Nat. Prod., 1990, vol. 53, pp. 23–41. https://doi.org/10.1021/np50067a003

    Article  CAS  PubMed  Google Scholar 

  18. Singh, S., Triambak Baviskar, A., Jain, V., Mishra, N., Banerjee, U.C., Bharatam, P.V., Tikoo, K., and Singh Ishar, M.P., Med. Chem. Comm., 2013, vol. 4, pp. 1257–1266. https://doi.org/10.1039/c3md00125c

    Article  CAS  Google Scholar 

  19. Kaminsky, D., Kryshchyshyn, A., and Lesyk, R., Eur. J. Med. Chem.2017, vol. 140, pp. 542–594. https://doi.org/10.1016/j.ejmech.2017.09.031

  20. Havrylyuk, D., Roman, O., and Lesyk, R., Eur. J. Med. Chem., 2016, vol. 113, pp.145–166. https://doi.org/10.1016/j.ejmech.2016.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lesyk, R.B., Zimenkovsky, B.S., Kaminskyy, D.V., Kryshchyshyn, A.P., Ya Havrylyuk, D., Atamanyuk, D.V., Yu Subtel’na, I., and Khylyuk, D.V., Biopolym. Cell, 2011, vol. 27, pp.107–117. https://doi.org/10.7124/bc.000089

    Article  CAS  Google Scholar 

  22. Tripathi, A.C., Gupta, S.J., Fatima, G.N., Sonar, K., Verma, A., and Saraf, S.K., Eur. J. Med. Chem., 2014, vol. 72, pp. 52–77. https://doi.org/10.1016/j.ejmech.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  23. Kaminskyy, D., Kryshchyshyn, A., and Lesyk, R., Eur. J. Med. Chem., 2017, vol. 140, pp. 542–594. https://doi.org/10.1016/j.ejmech.2017.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sarkate, A.P., Pansare, D, N., Karnik, K.S., Kale, I.A., Bahekar, S.S., and Shinde, D.B., Curr. Micro. Chem., 2017, vol. 4, pp. 163–167. https://doi.org/10.17628/ecb.2019.8.160-163

    Article  CAS  Google Scholar 

  25. Shelke, R.N., Pansare, D.N., Pawar, C.D., Shinde, D.B., Thore, S.N., Pawar, R.P., and Bembalkar, S.R., Res. Rev. J. Chem., 2016, vol. 5, pp. 29–36. http://www.rroij.com/open-access/synthesis-of-novel2hpyrano23dthiazole6carbonitrile-derivatives-in-aqueous-medium-.php?aid=76025

    CAS  Google Scholar 

  26. Pawar, C.D., Pansare, D.N., and Shinde, D.B., Eur. J. Chem., 2017, vol. 8, pp. 384–390. https://doi.org/10.5155/eurjchem.8.4.384-390.1635

    Article  CAS  Google Scholar 

  27. Pawar, C.D., Pansare, D.N., and Shinde, D.B., Eur. J. Chem., 2017, vol. 8, pp. 400–409. https://doi.org/10.5155/eurjchem.8.4.400-409.1645

    Article  CAS  Google Scholar 

  28. Pawar, C.D., Pansare, D.N., and Shinde, D.B., J. Chin. Chem. Soc., 2019, vol. 66, pp. 257–264. https://doi.org/10.1002/jccs.201800312

    Article  CAS  Google Scholar 

  29. Pansare, D.N., Mulla, N.A., Pawar, C.D., Shende, V.R., and Shinde, D.B., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 3569–3573. https://doi.org/10.1016/j.bmcl.2014.05.051

    Article  CAS  PubMed  Google Scholar 

  30. Pansare, D.N. and Shinde, D.B., Tetrahedron Lett., 2014, vol. 55, pp. 1107–1110. https://doi.org/10.1016/j.tetlet.2013.12.113

    Article  CAS  Google Scholar 

  31. Suthar, S.K., Bansal, S., Lohan, S., Modak, V., Chaudhary, A., and Tiwari, A., Eur. J. Med. Chem., 2013, vol. 66, pp. 372–379. https://doi.org/10.1016/j.ejmech.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  32. Cunico, W., Gomes, C.R.B., and Vellasco, W.T. Jr., Mini-Rev. Org. Chem., 2008, vol. 5, pp. 336–344. https://doi.org/10.2174/157019308786242232

    Article  CAS  Google Scholar 

  33. Srivastava, T., Haq, W., and Katti, S.B., Tetrahedron, 2002, vol. 58, pp. 7619–7624. https://doi.org/10.1016/S0040-4020(02)00866-9

    Article  CAS  Google Scholar 

  34. Cunico, W., Capri, L.R., Gomes, C.R.B., Sizilio, R.H., and Ardell, S.M.S.V., Synthesis, 2006, pp. 3405–3408. https://doi.org/10.1055/s-2006-950213

  35. Cunico, W., Gomes, L.R., Ferreira, M.L.G., Capri, L.R., Soares, M., and Wardell, S.M.S.V., Tetrahedron Lett., 2007, vol. 48, pp. 6217–6220. https://doi.org/10.1016/j.tetlet.2007.06.101

    Article  CAS  Google Scholar 

  36. Cunico, W., Vellasco, W.T., Moreth, M. Jr., and Gomes, C.R.B., Lett. Org. Chem., 2008, vol. 5, pp. 349–352. https://doi.org/10.2174/157017808784872089

    Article  CAS  Google Scholar 

  37. Shelke, R.N., Pansare, D.N., Pawar, C.D., Deshmukh, A.K., Pawar, R.P., and Bembalkar, S.R. Res. Rev. J. Chem., 2017, vol. 6, pp. 24–33.

    CAS  Google Scholar 

  38. Baglole, K.N., Boland, P.G., and Wagner, B.D., J. Photochem. Photobiol., 2005, vol. A173, pp. 230–237. https://doi.org/10.1016/j.jphotochem.2005.04.002

  39. Li, S. and Purdy, W.C., Chem. Rev., 1992, vol. 92, pp. 1457–1470. https://doi.org/10.1021/cr00014a009

    Article  CAS  Google Scholar 

  40. Challa, A., Abuja, A., Ali, J., and Khar, R.K., AAPS Pharm. Sci. Tech., 2005, vol. 6, pp. 329–357. https://doi.org/10.1208/pt060243

    Article  Google Scholar 

  41. Lazaro, M.L., Willmore, E., and Austin, C.A., Mutat Res., 2010, vol. 696, pp. 41–47. https://doi.org/10.1016/j.mrgentox.2009.12.010

    Article  CAS  Google Scholar 

  42. Cassady, J.M., Baird, W.M., and Chang, C.J., J. Nat. Prod., 1990, vol. 53, pp. 23–31. https://agris.fao.org/agris-search/search.do?recordID=US9033723

    Article  CAS  PubMed  Google Scholar 

  43. Kim, M.Y., Na, Y., Vankayalapati, H., Guzman, M.G., and Hurley, L.H., J. Med. Chem., 2003, vol. 46, pp. 2958–2972. https://doi.org/10.1021/jm030096i

    Article  CAS  PubMed  Google Scholar 

  44. Gududuru, V., Hurh, E., Dalton, J.T., and Miller, D.D., J. Med. Chem., 2005, vol. 48, pp. 2584–2588. https://doi.org/10.1021/jm049208b

    Article  CAS  PubMed  Google Scholar 

  45. Skehan, P., Stronger, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Jonathan, T.W., Heidi, B., Susan, K., and Michael, R.B., J. Natl. Cancer Inst., 1990, vol. 82, pp. 1107–1112. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  46. Vichai, V. and Kirtikara, K., Nature Protocols, 2006, vol. 1, pp. 1112–1116. https://doi.org/10.1038/nprot.2006.179

    Article  CAS  PubMed  Google Scholar 

  47. Sarkate, A.P., Dofe, V.S., Tiwari, S.V., Lokwani, D.K., Karnik, K.S., Kamble, D.D., Ansari, M.H.S.H., Dodamani, S., Jalalpure, S.S., Sangshetti, J.N., Azad. R., Burra, P.V.L.S, and Bhandari, S.V., Bioorg. Med. Chem. Lett., 2021, vol. 40, Article ID: 127916. https://doi.org/10.1016/j.bmcl.2021.127916

  48. El-Naggar, A.M., Abou-El-Regal, M.M., El-Metwally, S.A., Sherbiny, F.F., and Eissa, I.H., Mol. Divers., 2017, vol. 21, pp. 967–983. https://doi.org/10.1007/s11030-017-9776-1

    Article  CAS  PubMed  Google Scholar 

  49. Berenyi, A., Minorics, R., Ivanyi, Z., Ocsovszki, I., Ducza, E., Thole, H., Messinger, J., Wolfling, J., Motyan, G., Mernyak, E., Frank, E., Schneider, G., and Zupko, I., Steroids, 2013, vol.78, pp. 69–78. https://doi.org/10.1016/j.steroids.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  50. Das, B., Reddy, C.R., Kashanna, J., Mamidyala, S.M., and Kumar, C.G., Med. Chem. Res., 2012, vol. 21, pp. 3321–3325. https://doi.org/10.1007/s00044-011-9884-x

    Article  CAS  Google Scholar 

  51. Samundeeswari, S., Chougala, B., Holiyachi, M., Shastri, L., Kulkarni, M., Dodamani, S., Jalalpur, S., Joshi, S., Dixit, S., Sunagar, V., and Hunnur, R., Eur. J. Med. Chem., 2017, vol. 128, pp. 123–139. https://doi.org/10.1016/j.ejmech.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  52. Patra, N., De, U., and Kang, J.A., Eur. J. Pharmacol., 2011, vol. 658, pp. 98–107. https://doi.org/10.1016/j.ejphar.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  53. Shelke, R.N., Pansare, D.N., Sarkate, A.P., Narula, I.K., Lokwani, D.K., Tiwari, S.V., Azad, R., and Thopate, S.R., Bioorg. Med. Chem. Lett., 2020, vol. 30, Article ID: 127246.

  54. Thorat, N.M., Sarkate, A.P., Lokwani, D.K., Tiwari, S.V., Azad, R., and Thopate, S.R., Mol. Div., 2020, vol. 25, pp. 937–948. https://doi.org/10.1007/s11030-020-10079-1

    Article  CAS  Google Scholar 

  55. Koes, D.R., Baumgartner, M.P., and Camacho, C.J., J. Chem. Inform. Model, 2013, vol. 58, pp. 1893–1904. https://doi.org/10.1021/ci300604z

    Article  CAS  Google Scholar 

  56. Abbreviations: A-549, Human lung cancer cell lines; Caco-2, Colorectal adenocarcinoma; Cs2CO3, Cesium Carbonate; CTAB, Cetyltrimethyl ammonium bromide; DIPEAc, N,N-diisopropylethylamine; H3BO3, Boric acid; HepG-2, Hepatocellular carcinoma; K2CO3, Potassium carbonate; PEG-400, polyethylene glycol 400; TLC, Thin-layer chromatography; Topo-II, Topoisomerase II; ZnCl2, Zinc chloride; β-CD-SO3H, β-cyclodextrin-SO3H; HepG-2, Hepatocellular carcinoma; A-549, Human lung cancer cell lines; Caco-2, Colorectal adenocarcinoma.

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Principal and Head, Department of Chemistry, Vinayakrao Patil College, Vaijapur, Aurangabad (MS) India, for providing the laboratory facility.

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

The authors RBS and DNP—selected the literature data on the review topic. The authors APS, SVT, DL, SJ, and AMZ—contributed to manuscript preparation. All authors participated in the discussions.

Corresponding authors

Correspondence to Dattatraya N. Pansare or Ashok M. Zine.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: A-549, Human lung cancer cell lines; Caco-2, Colorectal adenocarcinoma; Cs2CO3, Cesium Carbonate; CTAB, Cetyltrimethyl ammonium bromide; DIPEAc, N,N-diisopropylethylamine; H3BO3, Boric acid; HepG-2, Hepatocellular carcinoma; K2CO3, Potassium carbonate; PEG-400, polyethylene glycol 400; TLC, Thin-layer chromatography; Topo-II, Topoisomerase II; ZnCl2, Zinc chloride; β-CD-SO3H, β-cyclodextrin-SO3H; HepG-2, Hepatocellular carcinoma; A-549, Human lung cancer cell lines; Caco-2, Colorectal adenocarcinoma.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, R.B., Pansare, D.N., Sarkate, A.P. et al. Exploration of 2-(Substituted Phenyl)-thiazolidin-4-one as Anticancer Agents. Russ J Bioorg Chem 49 (Suppl 1), S81–S95 (2023). https://doi.org/10.1134/S1068162023080071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023080071

Keywords:

Navigation