Skip to main content
Log in

Diagnostics of Early Changes in the Physicochemical Properties of Wood under the Influence of Fungal Infections

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The sound wood and damaged wood of Pinus sylvestris L. in an early stage of the development of a fungal infection were studied using scanning electron microscopy, thermogravimetry, and pyrolysis-gas chromatography/mass spectrometry. Scanning electron microscopy showed the presence of fungal hyphae in tracheids of the damaged wood. The hyphae penetrated into the tracheids through the pores. The cell wall degradation was not found. Quantitative indicators of the impact of fungal infection on wood were derived from analysis of the thermogravimetric data on the fourth derivative of the rate of mass loss and on the activation energy in the framework of the Ozawa-Flynn-Wall isoconversion model. Pyrolysis-gas chromatography/mass spectrometry analysis showed that the lignin/carbohydrate ratio in the damaged wood did not change markedly. This indicates the absence of pronounced degradation of polysaccharides or lignin in the early stage of wood degradation by Leptographium and Trichoderma fungi. However, a decrease in the relative contents of some individual compounds from among the flash pyrolysis products, as well as the changed mass loss profile and the reduced activation energy of the thermal degradation of the damaged wood point to the onset of transformation of the carbohydrate complex, mainly of hemicelluloses. The proposed approach to the diagnostics of the wood damage caused by fungi is highly effective, rapid, and does not require complex sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Mukhin,V.A., Biota of Xylotrophic Basidiomycetes of the West Siberian Plain, Yekaterinburg: UIF “Nauka,” 1993.

  2. Schwarze, F.W.M.R., Engels, J., and Mattheck, C., Fungal Strategies of Wood Decay in Trees, Berlin: Springer-Verlag, 2000. https://doi.org/10.1007/978-3-642-57302-6

  3. Shortle, W.C. and Dudzik, K.R., Wood Decay in Living and Dead Trees: a Pictorial Overview, US Department of Agriculture, Forest Service, General Technical Report, NRS-97, 2012.

  4. Daniel, G., in Secondary Xylem Biology: Origins, Functions, and Applications, Kim, Y.S., Funada, R., and Singh, A.P., Eds., Amsterdam: Elsevier, 2016, pp. 131–167.

  5. Madadi, M. and Abbas, A., J. Plant. Pathol. Microbiol., 2017, vol. 8, no. 2, pp. 1–6. https://doi.org/10.4172/2157-7471.1000398

    Article  CAS  Google Scholar 

  6. Kantharaj, P., Boobalan, B., Sooriamuthu, S., and Mani, R., Int. J. Cur. Res. Rev., 2017, vol. 9, pp. 1–12. https://doi.org/10.7324/ijcrr.2017.9211

    Article  CAS  Google Scholar 

  7. Råberg, U., Edlund, M.-L., Terziev, N., and Land, C.J., J. Wood Sci., 2005, vol. 51, pp. 429–440.

    Article  Google Scholar 

  8. Reh, U., Kraepelin, G., and Lamprecht, I., Appl. Environ. Microbiol., 1986, vol. 52, no. 5, pp. 1101–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Genestar, C. and Pons, C., Microchim. Acta, 2008, vol. 162, pp. 333–339.

    Article  CAS  Google Scholar 

  10. Popescu, C.-M., Lisa, G., Manoliu, A., Petronela, G., and Vasile, C., Carbohydr. Polym., 2010, vol. 80, pp. 78–83. https://doi.org/10.1016/j.carbpol.2009.10.058

    Article  CAS  Google Scholar 

  11. Popescu, C.-M., Tibirna, C.M., Manoliu, A., Petronela, G., and Vasile, C., Cellul. Chem. Technol., 2011, vol. 45, no. 9, pp. 565–569.

    CAS  Google Scholar 

  12. Vane, C.H., Int. Biodeterior. Biodegrad., 2003, vol. 51, pp. 67–75. https://doi.org/10.1016/S0964-8305(02)00089-6

    Article  CAS  Google Scholar 

  13. Karami, L., Schmidt, O., Fromm, J., Klinberg, A., and Schmitt, U., Wood Res., 2013, vol. 58, no. 4, pp. 591–598.

    CAS  Google Scholar 

  14. Barnett, H.L. and Hunter, B.B., Illustrated Genera of Imperfect Fungi, 4th ed., St. Paul: APS, 1998.

  15. Ozawa, T., Chem. Soc. Jpn., 1965, vol. 38, no. 11, pp. 1881–1886.

    Article  CAS  Google Scholar 

  16. Mamleev, V., Bourbigot, S., Le Bras, M., and Lefebvre, J., J. Therm. Anal. Calorim., 2004, vol. 78, pp. 1009–1027.

    Article  CAS  Google Scholar 

  17. Baroni, É.G., Tannous, K., Rueda-Ordόñez, Y.J., and Tinoco, K., J. Therm. Anal. Calorim., 2016, vol. 123, no. 2, pp. 909–917. https://doi.org/10.1007/s10973-015-4707-9

    Article  CAS  Google Scholar 

  18. Petrunina, E.A., Shapchenkova, O.A., and Loskutov, S.R., Khim. Rast. Syr’ya, 2021, no. 2, pp. 103–107. https://doi.org/10.14258/jcprm.2021028340

    Article  CAS  Google Scholar 

  19. Petrunina, E.A. and Loskutov, S.R., New Achievements in Chemistry and Chemical Technology of Plant Raw Materials: Proc. VIII All-Russ. Conf. with Participation of Foreign Scientists, October 5–9, 2020, Barnaul, Bazarnova, N.G. and Markin, V.I., Eds., Barnaul: Altai. Gos. Univ., 2020, pp. 13–15.

  20. Jacobs, K. and Wingfield, M.J., Leptographium Species: Tree Pathogens, Insect Associates, and Agents of Blue-Stain, St. Paul: APS, 2001.

  21. Alimova, F.K., Industrial Use of Fungi of the Genus Trichoderma, Kazan: Kazan. Gos. Univ., 2006.

  22. Gromovykh, T.I., Sadykova, V.S., and Alimova, F.K., Micromycetes of the Genus Trichoderma Pers, Moscow: Mosk. Gos. Univ. Pisch. Proizv., 2014.

  23. Solheim, H., Eur. J. For. Pathol., 1992, vol. 22, pp. 136–148.

  24. Perinbam, K., Bharath, B., Seeni, S., and Ravikumar, M., Int. J. Cur. Res. Rev., 2017, vol. 9, no. 21, pp. 1–12. https://doi.org/10.7324/ijcrr.2017.9211

    Article  CAS  Google Scholar 

  25. Río, J.C., Gutiérrez, A., Martínez, M.J., and Martínez, A.T., J. Anal. Appl. Pyrolysis, 2001, vols. 58–59, pp. 441–452.

    Google Scholar 

  26. Vinciguerra, V., Napoli, A., Bistoni, A., Petrucci, G., and Sgherzi, R., J. Anal. Appl. Pyrolysis, 2007, vol. 78, pp. 228–231. https://doi.org/10.1016/J.JAAP.2006.06.003

    Article  CAS  Google Scholar 

  27. González Martínez, M., Ohra-aho, T., da Silva Perez, D., Tamminen, T., and Dupont, C., J. Anal. Appl. Pyrolysis, 2019, vol. 137, pp. 195–202.

    Article  Google Scholar 

  28. Tamburini, D., Łucejko, J.J., Ribechini, E., and Colombini, M.P., J. Anal. Appl. Pyrolysis, 2016, vol. 118, pp. 249–258. https://doi.org/10.1016/j.jaap.2016.02.008

    Article  CAS  Google Scholar 

  29. Gutiérrez, A., Martínez, M.J., Almendros, G., González-Vila, F.J., and Martínez, A.T., Sci. Total Environ., 1995, vol. 167, pp. 315–328. https://doi.org/10.1016/0048-9697(95)04592-O

    Article  Google Scholar 

  30. Rouches, E., Dignac, M.-F., Zhou, S., and Carrère, H., J. Anal. Appl. Pyrolysis, 2017, vol. 123, pp. 409–418. https://doi.org/10.1016/j.jaap.2016.10.012

    Article  CAS  Google Scholar 

  31. Kačík, F., Veľková, V., Šmíra, P., Nasswettrová, A., Kačíková, D., and Reinprecht, L. Molecules, 2012, vol. 17, pp. 9990–9999. https://doi.org/10.3390/molecules17089990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, J., Sun, H., Chen, S., Zeng, L., and Wang, T., Bot. Stud., 2017, vol. 58, pp. 1–9. https://doi.org/10.1186/s40529-017-0168-8

    Article  CAS  Google Scholar 

  33. Pohleven, J., Burnard, M.D., and Kutnar, A., Wood Fiber Sci., 2019, vol. 51, no. 3, pp. 231–254. https://doi.org/10.22382/wfs-2019-023

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

The authors SRL, OAS, NVP, and IDG—conceptualization, writing review and editing; the authors SRL, EAP, EAT, AAA, MAP, and NVP—methodology and software; the authors EAP, EAT, AAA, and VAS—data curation; the authors SRL, OAS, and MAP—visualization; the authors SRL, OAS, and NVP—draft preparation; the author SRL—supervision. All authors selected the literature data on the review topic, participated in the discussions and agreed to the published version of the manuscript.

Corresponding author

Correspondence to S. R. Loskutov.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loskutov, S.R., Shapchenkova, O.A., Petrunina, E.A. et al. Diagnostics of Early Changes in the Physicochemical Properties of Wood under the Influence of Fungal Infections. Russ J Bioorg Chem 49, 1618–1627 (2023). https://doi.org/10.1134/S1068162023070762

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023070762

Keywords:

Navigation