Skip to main content
Log in

Synthesis of Indole-1,3,4-Oxadiazole Based Sulfonyl 1,2,3-Triazoles as Potent Anticancer and EGFR Inhibitors

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Herein, we synthesized some new indole-1,3,4-oxadiazole based sulfonyl 1,2,3-triazoles via a click chemistry approach and then characterized their structures by NMR, mass, and CHN analysis techniques. Later, the anticancer activity of the synthesized compounds was screened in vitro against different human cancer cell lines like MCF-7 and A-549, and the results were compared with the standard drug erlotinib. Most of the investigated compounds were found to be active against both cancer cell lines, MCF-7, and A-459. Specifically, compounds 2-(((1-(4-chloro-3,5-dimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)sulfonyl)-5-(1-methyl-1H-indol-3-yl)-1,3,4-oxadiazole and 2-(((1-(3,5-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl) sulfonyl)-5-(1-methyl-1H-indol-3-yl)-1,3,4-oxadiazole had superior activity against MCF-7, and remarkable activity against A-549. Similarly, the compound 2-(((1-(3,5-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)sulfonyl)-5-(1-methyl-1H-indol-3-yl)-1,3,4-oxadiazole showed more potent activity against EGFR and compound 2-(((1-(4-chloro-3,5-dimethoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)sulfonyl)-5-(1-methyl-1H-indol-3-yl)-1,3,4-oxadiazole showed equipotent activity against tyrosine kinase EGFR inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.

Similar content being viewed by others

REFERENCES

  1. Narsimha, S., Kumar, N.S., Kumaraswamy, B., Vasudeva, R.N., Hussain, A.S., and Srinivasa, R.M., Bioorg. Med. Chem. Lett., 2016, vol. 26, pp. 1639–1644. https://doi.org/10.1016/j.bmcl.2016.01.055

    Article  CAS  PubMed  Google Scholar 

  2. Gibbs, J. B., Science, 2000, vol. 287, pp. 1969–1973. https://doi.org/10.1126/science.287.5460.1969

    Article  CAS  PubMed  Google Scholar 

  3. Arve, L., Voigt, T., and Waldmann, H., QSAR Comb. Sci., 2006, vol. 25, pp. 449–456. https://doi.org/10.1002/qsar.200540213

    Article  CAS  Google Scholar 

  4. Rajitha, G., Janardhan, B., Mahendar, P., Ravibabu, V., Sairengpuii, H., Rajitha, B., Sadanandam, A., and Siddhardha, B., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 4239–4242. https://doi.org/10.1016/j.bmcl.2014.07.030

  5. Narsimha, S., Sathesh, K.N., Savitha, J.T., Ravinder, M., Srinivasa, R.M., and Vasudeva, R.N., J. Heterocyclic. Chem., 2020, vol. 57, pp. 1655–1665. https://doi.org/10.1002/jhet.3890

    Article  CAS  Google Scholar 

  6. Umer, S.M., Solangi, M., Khan, K.M., and Saleem, R.S.Z., Molecules, 2022, vol. 27, p. 7586. https://doi.org/10.3390/molecules27217586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bahaa, G.M.Y., Mostafa, H.A., Ahmed, H.A., Mohamed, A.A., Hussein, M.I., Ola, I.A.S., Mamdouh, F.A.M., Laurent, T., and Syed, N.A.B., Eur. J. Med. Chem., 2018, vol. 146, pp. 260–273. https://doi.org/10.1016/j.ejmech.2018.01.042

    Article  CAS  Google Scholar 

  8. Al-Wahaibi, L.H., Gouda, A.M., Abou-Ghadir, O.F., Salem, O.I.A., Ali, A.T., Farghaly, H.S., Abdelrahman, M.H., Trembleau, L., Abdu-Allah, H.H.M., and Youssif, B.G.M., Bioorg. Chem., 2020, vol. 104, p. 104260. https://doi.org/10.1016/j.bioorg.2020.104260

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H., Drug Des. Dev. Ther., 2016, vol. 10, pp. 3867–3872. https://doi.org/10.2147/DDDT.S119162

    Article  CAS  Google Scholar 

  10. Li, W., Qi, Y.-Y., Wang, Y.-Y., Gan, Y.-Y., Shao, L.-H., Zhang, L.-Q., Tang, Z.-H., Zhu, M., Tang, S.-Y., Wang, Z.-C., and Ouyang, G.-P., J. Heterocycl. Chem., 2020, vol. 57, pp. 2548–2560. https://doi.org/10.1002/jhet.3972

    Article  CAS  Google Scholar 

  11. Singh, P.K. and Silakari, O., Bioorg. Chem., 2018, vol. 79, pp. 163–170. https://doi.org/10.1016/j.bioorg.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Anjali, J., Sen, A., and Malla, R.R., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 670–680. https://doi.org/10.1134/S1068162021030092

    Article  Google Scholar 

  13. Muhammad, A.A., Ramzan, M.S., Aziz-ur-Rehman, Sabahat, Z.S., Syed, A.A.S., Muhammad, A.L., Farman, A.K., and Bushra, M., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 590–598. https://doi.org/10.1134/S1068162020040020

    Article  Google Scholar 

  14. Dhotre, B.K., Patharia, M.A., Khandebharad, A.U., Raut, S.V., and Pathan, M.A., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 1110–1116. https://doi.org/10.1134/S1068162020060059

    Article  CAS  Google Scholar 

  15. Shalini, B., Partha, P.R., and Jagadish, S., Anticancer. Agents. Med. Chem., 2018, vol. 17, pp. 1869–1883. https://doi.org/10.2174/1871521409666170425092906

    Article  CAS  Google Scholar 

  16. Ankur, V., Devender, P., and Kamal, S., Chem. Biol. Drug. Des., 2021, vol. 97, pp. 572–591. https://doi.org/10.1111/cbdd.13795

    Article  CAS  Google Scholar 

  17. Vindya, K.G., Ray, U., Mantelingu, K., Sathees, C.R., and Kanchugarakoppal, S.R., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 837–844. https://doi.org/10.1134/S106816202005009X

    Article  Google Scholar 

  18. Kandukuri, P., Dasari, G., Nukala, S.K., Srinivas, B., and Bhaskar, J., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 139–146. https://doi.org/10.1134/S1068162023010132

    Article  CAS  Google Scholar 

  19. Ramya, S.E., Satheesh, K.N., Ravinder, M., Vasudeva, R.N., and Narsimha, S., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 896–905. https://doi.org/10.1134/S1068162021040208

    Article  Google Scholar 

  20. Rakesh, S., Narasimha, S.T., Ravinder, M., Vasudeva, R.N., and Narsimha, S., Phosphorus. Sulfur. Silicon. Relat. Elem., 2021, vol. 196, pp. 455–460. https://doi.org/10.1080/10426507.2020.1854257

    Article  CAS  Google Scholar 

  21. Ramya, S.E., Thupurani, M.K., Ravinder, M., Gondru, R., and Sirassu, N., Bioorg. Med. Chem. Lett., 2021, vol. 47, p. 128201. https://doi.org/10.1016/j.bmcl.2021.128201

  22. Ramya, S.E., Satheesh, K.N., Narasimha, S.T., Rambabu, P., Rakesh, S., and Sirassu, N., ChemistrySelect, 2023, vol. 8, p. e202204256. https://doi.org/10.1002/slct.202204256

  23. Bennet, I.S., Brooks, G., Broom, N.J.P., Calvert, S.H., Coleman, K., and Francois, I., J. Antibiot., 1991, vol. 44, pp. 969–978. https://doi.org/10.7164/antibiotics.44.969

    Article  Google Scholar 

  24. Stilwell, G.A., Adams, H.G., and Turck, M., Antimicrob. Agents. Chemother., 1975, vol. 8, pp. 751–753. https://doi.org/10.1128/AAC.8.6.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soltis, M.J., Yeh, H.J., Cole, K.A., Whittaker, N., Wersto, R.P., and Kohn, E.C., Drug. Metab. Dispos., 1996, vol. 24, pp. 799–806.

    CAS  PubMed  Google Scholar 

  26. Zhi, X., Shi-Jia, Z., and Yi, L., Eur. J. Med. Chem., 2019, vol. 183, p. 111700. https://doi.org/10.1016/j.ejmech.2019.111700

    Article  CAS  Google Scholar 

  27. Manoj, K.N., Satheesh, K.N., Narasimha, S.T., Ravinder, M., Thupurani, M.K., and Sirassu, N., J. Mol. Struct., 2022, vol. 1250, p. 131722. https://doi.org/10.1016/j.molstruc.2021.131722

    Article  CAS  Google Scholar 

  28. Manoj, K.N, Satheesh, K.N., Narasimha, S.T., Rakesh, S., Ramya, S.E., Pavan, K., and Sirassu, N., J. Mol. Struct., 2022, vol. 1262, p. 132975. https://doi.org/10.1016/j.molstruc.2022.132975

    Article  CAS  Google Scholar 

  29. Rajyalakshmi, G., Rama, N.R.A., and Sarangapani, M., Saudi. Pharm. J., 2011, vol. 19, pp. 153–158. https://doi.org/10.1016/j.jsps.2011.03.002

    Article  CAS  Google Scholar 

  30. Swathi, C., Sirassu, N., Satheesh, K.N., Bhaskar, P., and Ravinder, M., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. 1314–1321. https://doi.org/10.1134/S1068162022060097

  31. Manmohan, R.D., Suneetha, P., Umesh, C.N., Vinod, D.J., and Siddaiah, V., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 1028–1033. https://doi.org/10.1134/S1068162021050228

    Article  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Author JMRV is research scholar under my supervision who carried out this synthesis and characterization work. Author SKK involved in the supervision of designed chemistry, evaluation of biological activity part, and manuscript writing.

Corresponding author

Correspondence to Shiva Kumar Koppula.

Ethics declarations

The data that support the findings of this study are available from the corresponding author upon reasonable request. This article does not contain any studies involving animals or human participants performed by any of the authors. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velidandla, J.M.R., Koppula, S.K. Synthesis of Indole-1,3,4-Oxadiazole Based Sulfonyl 1,2,3-Triazoles as Potent Anticancer and EGFR Inhibitors. Russ J Bioorg Chem 49, 1337–1345 (2023). https://doi.org/10.1134/S1068162023060146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023060146

Keywords:

Navigation