Skip to main content
Log in

Evaluation of Cytotoxic Activity of Loaded Catechin into Iron Oxide Nanoparticles Coated with Sodium Alginate and Hydroxyapatite against Human HT-29 Colon Adenocarcinoma and Breast Cancer MCF-7 Cells

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Drug delivery systems play a significant role in drug design.They could perform targeted and controlled release over a period, which is appropriate for poorly water-soluble drugs.The purpose of this study is to develop a drug delivery system, consisting of hydroxyapatite (HAp) polymer and sodium alginate (NaAlg), that covers the magnetic core of iron (III) oxide nanoparticles, in order to increases the loading capacity of iron oxide nanoparticles. In this study, iron (III) oxide nanoparticles were prepared by co-precipitation method and coated with HAp and NaAlg. The nanoparticles were characterized by X-ray diffraction, (FTIR), (SEM), and (TEM). Encapsulation efficiency of catechin hydrate (CH) and drug release rate was examined. The assessment of physicochemical characteristics show the synthesis of spherical particles with nanometer size (9–13 nm) and a high encapsulation efficiency (81.25 ± 2.55%) and drug-loading capacity (20.31 ± 0.64%). Maximum drug release obtain at pH = 5.5 coated. Iron (III) oxide show no significant cytotoxic effects. CH-loaded coated IONPs show a higher toxicity against HT-29 and MCF-7 cancer cells compared to free CH. This in vitro study show that the encapsulation of CH, as a potent herbal drug, into IONPs enhances its bioavailability, suggesting the NPs as an efficient vehicle for targeted drug delivery in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Radhakrishnan, E.K., Bava, S.V., Narayanan, S.S., Nath, L.R., Thulasidasan, A.K.T., Soniya, E.V., and Anto, R.J., PLOS ONE, 2014, vol. 9, p. 104401. https://doi.org/10.1371/journal.pone.0104401

    Article  CAS  Google Scholar 

  2. Wang, Y., Yu, J., Cui, R., Lin, J., and Ding, X., J. Lab. Automat., 2016, vol. 21, pp. 723–731. https://doi.org/10.1177/2211068216655524

    Article  CAS  Google Scholar 

  3. Anjum, F., Razvi, N., and Masood, M.A., MOJ Drug. Des. Develop. Ther., 2017, vol. 1, pp. 35–38. https://doi.org/10.15406/mojddt.2017.01.00006

    Article  Google Scholar 

  4. Abdel-Moneim, A., and Magdy, A., Eur. J. Biomed. Pharm. Sci., 2016, vol. 3, pp. 45–62.

    CAS  Google Scholar 

  5. Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S.A., and Afridi, S., Biomolecules, 2020, vol. 10, pp. 47–77.

    Article  Google Scholar 

  6. Poonam, S., and Chandana, M., Int. J. Pharm. Tech. Res., 2015, vol. 8, pp. 131–141.

    CAS  Google Scholar 

  7. Li, J., Lee, I.W., Shin, G.H., Chen, X., and Park, H.J., Eur. J. Pharm. Biopharm., 2015, vol. 94, pp. 322–332.

    Article  CAS  PubMed  Google Scholar 

  8. Hosseinimehr, S.J., J. Clin. Exc., 2014, vol. 2, pp. 50–63.

    Google Scholar 

  9. Alshatwi, A.A., J. Exp. Clin. Cancer Res., 2010, vol. 29, p. 167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paul, A.S., Das, J., Samadder, A., and Khuda-Bukhsh, A.R., Toxicol. Lett., 2013, vol. 222, pp. 10–22.

    Article  CAS  PubMed  Google Scholar 

  11. Heydari Sheikh Hossein, H., Zarrabi, A., and Zarepour, A., J. Babol. Univ. Med. Sci., 2017, vol. 19, pp. 64–70.

    Google Scholar 

  12. Ramezani Ali Akbari, K., and Abdi Ali, A., Nanomed J., 2017, vol. 4, pp. 37–43.

    Google Scholar 

  13. Manatunga, D.C., de Silva, R.M., de Silva, K.M.N., de Silva, N., Bhandari, S., and Yap, Y.K., Eur. J. Pharm. Biopharm., 2017, vol. 117, pp. 29–38. https://doi.org/10.1016/j.ejpb.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  14. Salehi, M., Ai, A., Ehterami, A., Einabadi, M., Taslimi, A.R., and Ai, A., Nanomed J., 2020, vol. 7, pp. 115–123. https://doi.org/10.22038/nmj.2020.07.004

    Article  CAS  Google Scholar 

  15. Patil, N., Bhaskar, R., Vyavhare, V., Dhadge, R., Khaire, V., and Patil, Y., Int. J. Curr. Pharm. Res., 2021, vol. 13, pp. 11­–16.

    Article  CAS  Google Scholar 

  16. Manikkam, R. and Pitchai, D., World J. Pharm. Sci., 2014, vol. 2, pp. 1553–1577.

    Google Scholar 

  17. Akrami, M., Khoobib, M., Khalilvand-Sedaghehb, M., Haririana, I., Bahadord, A., and Faramarzie, M.A., RSC Adv., 2015, vol. 5, pp. 88096–88107. https://doi.org/10.1039/C5RA13838H

    Article  CAS  Google Scholar 

  18. Zeng, L., Yan, J., Luo, L., Ma, M., and Zhu, H., Sci. Rep., 2017, vol. 7, p. 45521. https://doi.org/10.1038/srep45521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Manatunga, D.C., de Silva, R.M., Nalin de Silva, K.M. Neelika Malavige, G., Wijeratne, D.T., and Williams, G.R., Eur. J. Pharm. Biopharm., 2018, vol. 128, pp.18–26. https://doi.org/10.1016/j.ejpb.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  20. Jegan, A., Ramasubbu, A., Saravanan, S., and Vasanthkumar, S., Int. J. Nano Dimens., 2011, vol. 2, pp. 105–110.

    CAS  Google Scholar 

  21. Ahn, S., Seo, E., Kim, K., and Lee, S.J., Sci. Rep., 2013, vol. 3, p. 1997. https://doi.org/10.1038/srep01997

    Article  PubMed  PubMed Central  Google Scholar 

  22. Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W., and Davis, A., Appl. Spectrosc., 2018, vol. 35, pp. 475–485.

    Article  Google Scholar 

  23. Cai, H. An, X., Cui, J., Li, J., Wen, S., and Li, K., ACS Appl. Mater. Int., 2013, vol. 13, pp. 1722­1731. https://doi.org/10.1021/am302883m

    Article  CAS  Google Scholar 

  24. Bano, S., Afzal, M., Waraich, M.M., Alamgir, K., and Nazir, S., Int. J. Pharm., 2016, vol. 513, pp. 554–563. https://doi.org/10.1016/j.ijpharm.2016.09.051

    Article  CAS  PubMed  Google Scholar 

  25. Liao, S.H., Liu, C.H., Bastakoti, B.P., Suzuki, N., Chang, Y., and Yamauchi, Y., Int. J. Nanomed., 2015, vol. 10, pp. 3315–3328.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Authors KS and MN designed the experiments. Authors MN and SF synthesized the nano samples. Authors MN and RM performed cell culture studies and experiments. Authors KS and MN performed biochemical studies. Authors SF, KS, and MN conducted nanotechnology studies. Author SF performed nanoparticle data processing and XRD, FT-IR spectroscopy. Authors RM, KS, and MN performed the cellular and cytotoxic studies. Author RM interpreted the cytotoxic results of the samples. Authors KS and MN contributed to manuscript preparation. All authors participated in the discussion.

Corresponding author

Correspondence to K. Shahanipour.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobahari, M., Shahanipour, K., Fatahian, S. et al. Evaluation of Cytotoxic Activity of Loaded Catechin into Iron Oxide Nanoparticles Coated with Sodium Alginate and Hydroxyapatite against Human HT-29 Colon Adenocarcinoma and Breast Cancer MCF-7 Cells. Russ J Bioorg Chem 49, 1049–1058 (2023). https://doi.org/10.1134/S1068162023050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023050126

Keywords:

Navigation