Skip to main content
Log in

Microwave-Assisted Triflic Anhydride Mediated Mild and Efficient Method for the Synthesis of Novel Enamine Functionalized Benzothiophene Derivatives and Their Anticancer Activity

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of triflic anhydride mediated novel enamine functionalized benzothiophene derivatives were designed, synthesized by microwave-assisted triflic anhydride mediated protocol and analyzed by various spectroscopic methods. The synthesized benzothiophene derivatives were screened for their anticancer activity against MCF-7 breast cancer cells and human leukemia cell line K-562. The compounds exhibited activity ranging from weak to significant in terms of percentage cytotoxicity. Amongst the screened compounds, compound N,N-dibutyl-6-ethylbenzo[b]thiophen-3-amine (IVc) possess potential anticancer activity. Furthermore, SAR studies indicated that presence of n-butyl group will increase the anticancer activity, on the other hand compound N,N-dibutyl-6-chlorobenzo[b]thiophen-3-amine (IIc) is inactive, and from this result it is indicating that presence of electron withdrawing group does not have possible anticancer activity. We have an opinion that, this developed model helps us in future to develop more potential enamine functionalized benzothiophene derivatives for their anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A., CA: Cancer J. Clin., 2018, vol. 68, pp. 394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Lee, M.M.L., Chan, B.D., Wong, W.Y., Leung, T.W., Qu, Z., Huang, J., Zhu, L., Lee, C.S., Chen, S., and Tai, W.C.S., ACS. Omega, 2020, vol. 24, pp. 14586–14956. https://doi.org/10.1021/acsomega.0c01276

    Article  CAS  Google Scholar 

  3. Keri, R.S., Chand, K., Budagumpi, S., Somappa, S.B., Patil, S.A., and Nagaraja, B.M., Eur. J. Med. Chem., 2017, vol. 138, pp. 1002–1033. https://doi.org/10.1016/j.ejmech.2017.07.038

    Article  CAS  PubMed  Google Scholar 

  4. Bosin, T.R. and Campaigne, E.E., Adv. Drug. Res., 1977, vol. 11, pp. 191–232.

    CAS  PubMed  Google Scholar 

  5. Fakhr, I.M., Radwan, M.A., El-Batran, S., Abd El-Salam, O.M., and El-Shenawy, S.M., Eur. J. Med. Chem., 2009, vol. 44, pp. 1718–1725. https://doi.org/10.1016/j.ejmech.2008.02.034

    Article  CAS  PubMed  Google Scholar 

  6. Berrade, L., Aisa, B., Ramirez, M.J., Galiano, S., Guccione, S., Moltzau, L.R., Levy, F.O., Nicoletti, F., Battaglia, G., Molinaro, G., and Aldana, I., J. Med. Chem., 2011, vol. 54, pp. 3086–3090. https://doi.org/10.1021/jm2000773

    Article  CAS  PubMed  Google Scholar 

  7. Qin, Z., Kastrati, I., Chandrasena, R.E.P., Liu, H., Yao, P., Petukhov, P.A., Bolton, J.L., and Thatcher, G.R., J. Med. Chem., 2007, vol. 50, pp. 2682–2692. https://doi.org/10.1021/jm070079j

  8. Romagnoli, R., Baraldi, P.G., Carrion, M.D., Cara, C.L., Preti, D., Fruttarolo, F., Pavani, M.G., Tabrizi, M.A., Tolomeo, M., Grimaudo, S., and Di Cristina, A., J. Med. Chem., 2007, vol. 50, pp. 2273–2277. https://doi.org/10.1021/jm070050f

    Article  CAS  PubMed  Google Scholar 

  9. Abdelhamid, R., Luo, J., VandeVrede, L., Kundu, I., Michalsen, B., Litosh, V.A., Schiefer, I.T., Gherezghiher, T., Yao, P., Qin, Z., and Thatcher, G.R., ACS. Chem. Neurosci., 2011, vol. 2, pp. 256–268. https://doi.org/10.1021/cn100106a

  10. Martorana, A., Gentile, C., Perricone, U., Piccionello, A.P., Bartolotta, R., Terenzi, A., Pace, A., Mingoia, F., Almerico, A.M., and Lauria, A., Eur. J. Med. Chem., 2015, vol. 90, pp. 537–546. https://doi.org/10.1016/j.ejmech.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Rao, G.K. and Subramaniam, R., Chem. Sci. J., 2015, vol. 6, pp. 92–96. https://doi.org/10.4172/2150-3494.100092

    Article  CAS  Google Scholar 

  12. Rackham, M.D., Brannigan, J.A., Moss, D.K., Yu, Z., Wilkinson, A.J., Holder, A.A., Tate, E.W., and Leatherbarrow, R.J., J. Med. Chem., 2013, vol. 56, pp. 371­–375. https://doi.org/10.1021/jm301474t

    Article  CAS  PubMed  Google Scholar 

  13. Naganagowda, G. and Padmashali, B., Phosphorus. Sulfur. Silicon. Relat. Elem., 2010, vol. 8, pp. 1691–1700. https://doi.org/10.1080/10426500903241713

    Article  CAS  Google Scholar 

  14. Moinet, G., Leriche, C., and Kergoat, M. EP1685121 A1. PCT/EP2004/012075.2008.

  15. Malamas, M.S., Sredy, J., Moxham, C., Katz, A., Xu, W., McDevitt, R., Adebayo, F.O., Sawicki, D.R., Seestaller, L., Sullivan, D., and Taylor, J.R., J. Med. Chem., 2000, vol. 43, pp. 1293–1310. https://doi.org/10.1021/jm990560c

    Article  CAS  PubMed  Google Scholar 

  16. Romagnoli, R., Baraldi, P.G., Kimatrai Salvador, M., Preti, D., Aghazadeh Tabrizi, M., Bassetto, M., Brancale, A., Hamel, E., Castagliuolo, I., Bortolozzi, R., and Basso, G., J. Med. Chem., 2013, vol. 56, pp. 2606–2618. https://doi.org/10.1021/jm400043d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nousheen, A., Chandrakanth, M., Sagar, B.K., and Somarapu, V.L., J. Mol. Struct., 2022, vol. 1261, p. 132899. https://doi.org/10.1016/j.molstruc.2022.132899

    Article  CAS  Google Scholar 

  18. Laxmi, S.V., Anil, P., Rajitha, G., Rao, A.J., Crooks, P.A., and Rajitha, B., J. Chem. Biol., 2016, vol. 9, pp. 97–106. https://doi.org/10.1007/s12154-016-0154-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chimaladenne, V., Manda, R., Gudipally, A.R., Valluru, K.R., Brahman, P.K., and Somarapu, V.L., Synth. Commun., 2020, vol. 50, pp. 2941–2949. https://doi.org/10.1080/00397911.2020.1787447

  20. Gawande, M.B., Shelke, S.N., Zboril, R. and Varma, R.S., Acc. Chem. Res., 2014, vol. 47, pp.1338–1348. https://doi.org/10.1021/ar400309b

  21. Anil, P., Chatterjee, A., and Vijaya Laxmi, S., Russ. J. Org. Chem., 2019, vol. 55, pp. 1374–1379. https://doi.org/10.1134/S1070428019090173

  22. Lumbroso, A., Behra, J., Kolleth, A., Dakas, P.Y.K.U., Catak, S., Sulzer-Mosse, S., and De Mesmaeker, A., Tetrahedron Lett., 2015, vol. 56, pp. 6541–6545. https://doi.org/10.1016/j.tetlet.2015.09.103

    Article  CAS  Google Scholar 

  23. Kolleth, A., Muller, S., Lumbroso, A., Tanriver, G., Catak, S., Sulzer-Mosse, S., and De Mesmaeker, A., Tetrahedron Lett., 2018, vol. 59, pp. 3242–3248. https://doi.org/10.1016/j.tetlet.2018.06.049

    Article  CAS  Google Scholar 

  24. Vichai, V. and Kirtikara, K., Sulforhodamine B, Colorimetric Assay Cytotoxicity Screen. Nat. Protocols., 2006, vol. 1, pp. 1112–1116. https://doi.org/10.1038/nprot.2006.179

    Article  CAS  PubMed  Google Scholar 

  25. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., and Boyd, M.R. J. Natl. Cancer. Inst., 1990, vol. 82, pp. 1107–1112. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors sincerely thank Anti-Cancer Drug screening facility (ACDSF) at ACTREC, Tata Memorial Centre, Navi Mumbai for in vitro testing for anticancer activity evaluation.

Funding

This work was made possible by a grant from the Department of Science and Technology (DST), New Delhi (grant no. SB/EMEQ-323/2014).

Author information

Authors and Affiliations

Authors

Contributions

Author PA designed the experiments and synthesized samples. Authors SE, MC synthesized samples, participated in data processing. Author TPK participated in data processing. Author VRA contributed to manuscript preparation. Author SVL designed the experiments and contributed to manuscript preparation. All authors participated in the discussion.

Corresponding author

Correspondence to Somarapu Vijaya Laxmi.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anil, P., Endoori, S., Chandrakanth, M. et al. Microwave-Assisted Triflic Anhydride Mediated Mild and Efficient Method for the Synthesis of Novel Enamine Functionalized Benzothiophene Derivatives and Their Anticancer Activity. Russ J Bioorg Chem 49, 1034–1042 (2023). https://doi.org/10.1134/S1068162023050102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023050102

Keywords:

Navigation