Skip to main content
Log in

Theoretical Grounding and Formation of Experimental Approaches to Hyaluronidase Structure Consolidation Due to Its Computational Interactions with Shortchain Glycosaminoglycan Ligands

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

The computational study of a 3D model of the hyaluronidase interaction with shortchain glycosaminoglycan ligands demonstrated the diversity and significance of their reaction on enzyme structure. Exploratory computational consideration of the interaction of a 3D model of bovine testicular hyaluronidase (BTH) with short chain glycosaminoglycan ligands demonstrated the diversity and significance of their effect on the structure of the enzyme. The reported impact was due to electrostatic noncovalent interactions (without specific binding to the active site), causing noticeable conformational changes in the molecule biocatalyst/enzyme. As a result of this, the inactivation and stabilization of the enzyme globule are observed, and a change in its inhibition by heparin. The binding of chondroitin trimers (on centers cs2, cs4, cs7, cs8 or cs1, cs2, cs4, cs7, cs8) decreased the inhibition of the enzyme by tetramer heparin. The importance of ligand binding for the regulation of the functioning of the enzyme and the presence of a diverse and multicomponent microenvironment of the biocatalyst is noted. The sequence of preferential coupling of ligands with hyaluronidase is elicited in our study making it possible to evaluate the feasibility of achieving experimental selective modification of the enzyme (possibly noncovalently or covalently, for instance, with chondroitin sulfate trimers on centers cs7, cs1, cs5) for potential experimental production of stabilized forms of the enzyme. Promising approaches are noncovalent effects on hyaluronidase of chondroitin or chondroitin sulfate trimers, as well as covalent modification of the biocatalyst with chondroitin sulfate trimer or the production of genetically engineered derivatives of the enzyme. The mentioned changes in the structure of hyaluronidase may contribute to the implementation of its directed experimental design for subsequent biomedical research and practical clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Maksimenko, A.V. and Beabealashvili, R.S., Russ. J. Bioorg. Chem., 2018, vol. 44, pp. 165–172. https://doi.org/10.1134/S1068162018020048

    Article  CAS  Google Scholar 

  2. Reitsma, S., Slaaf, D.W., Vink, Y., van Zandvoort, M.A., and de Egbrink, M.G., Pfluger’s Arch., 2007, vol. 454, pp. 345–359. https://doi.org/10.1007/s00424-007-0212-8

    Article  CAS  Google Scholar 

  3. Maksimenko, A., Cardiol. Cardiovasc. Res., 2020, vol. 4, pp. 220–230.

    Article  Google Scholar 

  4. Chandel, N.S., Cold Spring Harbor Perspect. Biol., 2021, vol. 13, pp. 1–7. https://doi.org/10.1101/cshspect.040568

    Article  Google Scholar 

  5. Sankaranarayanan, N.V., Nagarajan, B., and Desai, U.R., Curr. Opin. Struct. Biol., 2018, vol. 50, pp. 91–100. https://doi.org/10.1016/j.sbi.2017.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang, J. and Chi, L., Carbohydr. Res., 2017, vol. 452, pp. 54–63. https://doi.org/10.1016/j.carres.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Nieuwdorp, M., Meuwese, M.C., Vink, H., Hoekstra, J.B., Kastelein, J.J., and Stroes, E.G.S., Curr. Opin. Lipidol., 2005, vol. 16, pp. 507–511. https://doi.org/10.1097/01.mol.0000181325.08926.9c

    Article  CAS  PubMed  Google Scholar 

  8. Broekhuisen, L.N., Moojij, H.L., Kastelein, J.J., Stroes, E.G.S., Vink, H., and Nieuwdorp, M., Curr. Opin. Lipidol., 2009, vol. 20, pp. 57–62. https://doi.org/10.1097/mol.0b013e328321b587

    Article  Google Scholar 

  9. Andreozzi, G.M., Int. Angiol., 2014, vol. 33, pp. 255–262.

    CAS  PubMed  Google Scholar 

  10. Coccheri, S., Int. Angiol., 2014, vol. 33, pp. 263–274.

    CAS  PubMed  Google Scholar 

  11. Masola, V., Zaza, G., Onisto, M., Lupo, A., and Gambaro, G., Int. Angiol., 2014, vol. 33, pp. 243–254.

    CAS  PubMed  Google Scholar 

  12. Manello, F., Ligi, D., and Raffetto, J.D., Int. Angiol., 2014, vol. 33, pp. 236–242.

    Google Scholar 

  13. Maksimenko, A.V., Turashev, A.D., and Beabealashvili, R.S., Biochemistry (Moscow), 2015, vol. 80, pp. 284–295. https://doi.org/10.1134/S0006297915030049

    Article  CAS  PubMed  Google Scholar 

  14. Maksimenko, A.V. and Beabealashvili, R.S., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 181–186. https://doi.org/10.1134/S1068162020020156

    Article  CAS  Google Scholar 

  15. Clemente-Moragon, A., Gomez, M., Villena-Gutierrez, R., Lalama, D.V., Garcia-Prieto, J., Martinez, F., Sanchez-Cabo, F., Fuster, V., Oliver, E., and Ibanez, B., Eur. Heart J., 2020, vol. 41, pp. 4425–4440. https://doi.org/10.1093/eurheartj/ehaa733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung, H., Arch. Plast. Surg., 2020, vol. 47, pp. 297–300. https://doi.org/10.5999/aps.2020.00752

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maksimenko, A.V. and Bibilashvili, R.Sh., Izv. Akad. Nauk, Ser. Khim., 2018, vol. 67, pp. 636–646. https://doi.org/10.1007/s11172-018-2117-4

    Article  CAS  Google Scholar 

  18. Maksimenko, A.V., Sakharova, Yu.S., and Bibilashvili, R.Sh., Kardiol. Vestn., 2021, vol. 16, pp. 15–22. https://doi.org/10.17116/Cardiobulletin20211603115

  19. Maksimenko, A.V., Sakharova, Yu.S., and Bibilashvili, R.Sh., Kardiol. Vestn., 2021, vol. 16, pp. 17–25. https://doi.org/10.17116/Cardiobulletin202116041157

    Article  Google Scholar 

  20. Maksimenko, A.V., Vavaeva, A.V., Sakharova, Yu.S., Vavaev, A.V., and Bibilashvili, R.Sh., Kardiol. Vestn., 2022, vol. 17, pp. 39–43. https://doi.org/10.17116/Cardiobulletin20221703139

    Article  Google Scholar 

  21. Turashev, A.D., Tishchenko, E.G., and Maksimenko, A.V., Mol. Med., 2009, no. 6, pp. 50–55.

  22. Zaghmi, A., Greschner, A.A., and Gauthier, M.A., in Polymer–Protein Conjugates, Pasut, G.and Zalipsky, S., Eds., Elsevier, 2020, pp. 389–406. https://doi.org/10.1016/B978-0-444-64081-9.00017-6

  23. Maneval, D.C., Caster, C.L., Derunes, C., Locke, T.W., Muhsin, M., Sauter, S., Sekulovich, R.E., Thompson, C.B., and LaBarre, M.J., in Polymer–Protein Conjugates, Pasut, G. and Zalipsky, S, Eds., Elsevier, 2020, pp. 175–204. https://doi.org/10.1016/B978-0-444-64081-9.00009-7

  24. Ferguson, E.L., Varache, M., Stokniene, J., and Thomas, D.W., in Polymer–Protein Conjugates, Pasut, G. and Zalipsky, S, Eds., Elsevier, 2020, pp. 421–453. https://doi.org/10.1016/B978-0-444-64081-9.00019-X

  25. Milen'kina, S.G., Del’ver, E.P., Belogurov, A.A., Bibilashvili, R.Sh., Arzamastsev, E.V., and Staroverov, I.I., Kardiol. Vestn., 2019, vol. 15, pp. 12–21. https://doi.org/10.36396/MS.2019.15.4.002

    Article  Google Scholar 

  26. Markov, V.A., Duplyakov, D.V., Konstantinov, S.L., Klein, G.V., Aksent’ev, S.B., Platonov, D.Yu., Vyshlov, E.V., Ponomarev, E.A., Rabinovich, R.M., Makarov, E.L., Kulibaba, E.V., Yunevich, D.S., Kritskaya, O.V., Baranov, E.A., Talibov, O.B., and Gerasimets, E.A., Ross. Kardiol. Zh., 2018, vol. 23, pp. 110–116. https://doi.org/10.15829/1560-4071-2018-11-110-116

    Article  Google Scholar 

  27. Markov, V.A., Duplyakov, D.V., Konstantinov, S.L., Klein, G.V., Aksent’ev, S.B., Platonov, D.Yu., Vyshlov, E.V., Ponomarev, E.A., Rabinovich, R.M., Makarov, E.L., Kulibaba, E.V., Kritskaya, O.V., Baranov, E.A., Talibov, O.B., and Gerasimets, E.A., Kardiol. Vestn., 2017, vol. 12, no. 3, pp. 52–59.

    Google Scholar 

  28. Gurevich, V., Cardiol. Vasc. Res., 2021, vol. 5, pp. 1–3.

    Google Scholar 

  29. Maksimenko, A.V. and Tischenko, E.G., J. Thromb. Thrombolysis, 1999, vol. 7, pp. 307–312. https://doi.org/10.1023/a:1008939428688

    Article  CAS  PubMed  Google Scholar 

  30. Maksimenko, A.V., Acta Naturae, 2012, vol. 4, pp. 72–81. www.ncbi.nlm.nih.gov/m/pubmed/23150805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maksimenko, A., Turashev, A., Fedorovich, A., Rogoza, A., and Tischenko, E., J. Life Sci., 2013, vol. 7, no. 2, pp. 171–188.

    CAS  Google Scholar 

  32. Trizna, E., Baidamshina, D., Gorshkova, A., Drucker, V., Bogachev, M., Tikhonov, A., and Kayumov, A., Pharmaceutics, 2021, vol. 13, p. 1740. https://doi.org/10.3390/pharmaceutics13111740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kul’chavenya, E.V., Shevchenko, S.Yu., Cherednichenko, A.G., Breusov, A.A., and Vinnitskii, A.A., Urologiya, 2020, vol. 3, pp. 56–62. https://doi.org/10.18565/urology.2020.3.56-62

    Article  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Ministry of Health of the Russian Federation (government task of the Academician E.I. Chazov, theme 121031300189-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maksimenko.

Ethics declarations

The authors declare no conflicts of interest.

The presented material does not contain a description of studies conducted by any of the authors of this work, involving people and using animals as research objects.

Additional information

Abbreviations: BTH, bovine testicular hyaluronidase; GAG, glycosaminoglycan; GN, hyaluronan; HP, heparin; CN, chondroitin; CS, chondroitin sulfate; β1AR, adrenergic receptor β1; 3D, spatial (tertiary) structure of the enzyme.

Corresponding author; phone: +7 (495) 414-60-25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimenko, A.V., Beabealashvili, R.S. Theoretical Grounding and Formation of Experimental Approaches to Hyaluronidase Structure Consolidation Due to Its Computational Interactions with Shortchain Glycosaminoglycan Ligands. Russ J Bioorg Chem 49, 249–261 (2023). https://doi.org/10.1134/S1068162023020164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023020164

Keywords:

Navigation