Skip to main content
Log in

Synthesis of ZIF-8(Fe) Functionalized with Citral as Potent Antimicrobial Candidate against Multi-Drug Resistant Enteroaggregative Escherichia coli and Non-Typhoidal Salmonella spp.

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Zeolite imidazole framework is one of the sub-classes of metal-organic frameworks which can enhance the antimicrobial activity of antibiotics against multi-drug resistant (MDR) bacteria. In this study, the authors report nanoscale dual metal cluster-based ZIF-8(Fe) to encapsulate citral. UV-DRS and FTIR spectra confirmed the encapsulation of citral, while PXRD illustrated an average particle size of 36 nm with uniform-sized nanoparticles. Drug encapsulation and loading efficiency of citral into ZIF-8(Fe) were found as 19.30 and 77.20%, respectively, and 40% release of citral was observed within 24 h. The hemolytic potential of ZIF-8(Fe) was found to be less than 5% for 100 µg/mL. The in silico docking studies of citral with dispersin of enteroaggregative E. coli and osmoporin C for Salmonella spp. revealed binding energy (kcal/mol) of –4.67 and –4.53, respectively. Further, the MIC and MBC was found to be 62.50 and 125 µg/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rudramurthy, G.R., Swamy, M.K., Sinniah, U.R., and Ghasemzadeh, A., Molecules, 2016, vol. 21, pp. 1–30. https://doi.org/10.3390/molecules21070836

    Article  CAS  Google Scholar 

  2. Bag, P.P., Singh, G.P., Singha, S., and Roymahapatra, G., Eng. Sci., 2021, vol. 13, pp. 1–10. https://doi.org/10.30919/es8d1166

    Article  CAS  Google Scholar 

  3. Keeffe, M.O., Peskov, M.A., Ramsden, S.J., and Yaghi, O.M., Acc. Chem. Res., 2008, vol. 41, pp. 1782–1789. https://doi.org/10.1021/ar800124u

    Article  CAS  Google Scholar 

  4. Zheng, H., Zhang, Y., Liu, L., Wan, W., Guo, P., Nyström, A.M., and Zou, X., J. Am. Chem. Soc., 2016, vol. 138, pp. 962–968. https://doi.org/10.1021/jacs.5b11720

    Article  CAS  PubMed  Google Scholar 

  5. Sapsanis, C., Omran, H., Chernikova, V., Shekhah, O., Belmabkhout, Y., Buttner, U., Eddaoudi, M., and Salama, K.N., Sensors, 2015, vol. 15, pp. 18153–18166. https://doi.org/10.3390/s150818153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guan, Y., Shi, J., Xia, M., Zhang, J., Pang, Z., Marchetti, A., Wang, X., Cai, J., and Kong, X., Appl. Surf. Sci., 2017, vol. 423, pp. 349–353. https://doi.org/10.1016/j.apsusc.2017.06.183

    Article  CAS  Google Scholar 

  7. Allendorf, M.D. and Stavila, V., CrystEngComm., 2015, vol. 17, pp. 229–246. https://doi.org/10.1039/c4ce01693a

    Article  CAS  Google Scholar 

  8. Kwon, H.T. and Jeong, H.K., Chem. Eng. Sci., 2015, vol. 124, pp. 20–26. https://doi.org/10.1016/j.ces.2014.06.021

    Article  CAS  Google Scholar 

  9. Bo, S., Ren, W., Lei, C., Xie, Y., Cai, Y., Wang, S., Gao, J., Ni, Q., and Yao, J., J. Solid State Chem., 2018, vol. 262, pp. 135–141. https://doi.org/10.1016/j.jssc.2018.02.022

    Article  CAS  Google Scholar 

  10. Cai, W., Chu, C.C., Liu, G., and Wáng, Y.X.J., Small, 2015, vol. 11, pp. 4806–4822. https://doi.org/10.1002/smll.201500802

    Article  CAS  PubMed  Google Scholar 

  11. Velásquez-Hernández, M.D.J., Ricco, R., Carraro, F., Limpoco, F.T., Linares-Moreau, M., Leitner, E., Wiltsche, H., Rattenberger, J., Schröttner, H., Frühwirt, P., Stadler, E.M., Gescheidt, G., Amenitsch, H., Doonan, C.J., and Falcaro, P., CrystEngComm., 2019, vol. 21, pp. 4538–4544. https://doi.org/10.1039/c9ce00757a

    Article  CAS  Google Scholar 

  12. Long, J.R. and Yaghi, O.M., Chem. Soc. Rev., 2009, vol. 38, pp. 1213–1214. https://doi.org/10.1039/b903811f

    Article  CAS  PubMed  Google Scholar 

  13. Keeffe, M.O. and Yaghi, O.M., Chem. Rev., 2012, vol. 112, pp. 675–702. https://doi.org/10.1021/cr200205j

    Article  CAS  Google Scholar 

  14. de Moura Ferraz, L.R., Tabosa, A.É.G.A., da Silva Nascimento, D.D.S., Ferreira, A.S., de Albuquerque Wanderley Sales, V., Silva, J.Y.R., Júnior, S.A., Rolim, L.A., de Souza Pereira, J.J., and Rolim-Neto, P.J., Sci. Rep., 2020, vol. 10, pp. 1–14. https://doi.org/10.1038/s41598-020-73848-w

    Article  CAS  Google Scholar 

  15. Ahmed, S.A ., Bagchi, D., Katouah, H.A., Nur, H., Altass, H.M., and Pal, S.K., Sci. Rep., 2019, vol. 9, pp. 1–11. https://doi.org/10.1038/s41598-019-55542-8

    Article  CAS  Google Scholar 

  16. Abishad, P., Jayashankar, M., Srinath, B.S., Namratha, K., Kurkure, N.V., Barbuddhe, S.B., Rawool, D.B., Vergis, J., and Byrappa, K., Inorg. Chem. Commun., 2022, p. 110058. https://doi.org/10.1016/j.inoche.2022.110058

  17. Shahzadi, P., Muhammad, A., Mehmood, F., and Chaudhry, M.Y., J. Antivirals Antiretrovir., 2014, vol. 6, pp. 28–31. https://doi.org/10.4172/jaa.1000091

    Article  CAS  Google Scholar 

  18. Kaur, H., Mohanta, G.C., Gupta, V., Kukkar, D., and Tyagi, S., J. Drug Deliv. Sci. Technol., 2017, vol. 41, pp. 106–112. https://doi.org/10.1016/j.jddst.2017.07.004

    Article  CAS  Google Scholar 

  19. Zheng, C., Wang, Y., Phua, S.Z.F., Lim, W.Q., and Zhao, Y., ACS Biomater. Sci. Eng., 2017, vol. 3, pp. 2223–2229. https://doi.org/10.1021/acsbiomaterials.7b00435

    Article  CAS  PubMed  Google Scholar 

  20. Adhikari, C., Das, A., and Chakraborty, A., Mol. Pharm., 2015, vol. 12, pp. 3158–3166. https://doi.org/10.1021/acs.molpharmaceut.5b00043

    Article  CAS  PubMed  Google Scholar 

  21. Hoop, M., Walde, C.F., Riccò, R., Mushtaq, F., Terzopoulou, A., Chen, X.Z., deMello, A.J., Doonan, C.J., Falcaro, P., Nelson, B.J., Puigmartí-Luis, J., and Pané, S., Appl. Mater. Today, 2018, vol. 11, pp. 13–21. https://doi.org/10.1016/j.apmt.2017.12.014

    Article  Google Scholar 

  22. Chen, G., Yu, B., Lu, C., Zhang, H., Shen, Y., and Cong, H., CrystEngComm., 2018, vol. 20, pp. 7486–7491. https://doi.org/10.1039/c8ce01302k

    Article  CAS  Google Scholar 

  23. He, M., Zhou, J., Chen, J., Zheng, F., Wang, D., Shi, R., Guo, Z., Wang, H., and Chen, Q., J. Mater. Chem. B, 2015, vol. 3, pp. 9033–9042. https://doi.org/10.1039/c5tb01830g

    Article  CAS  PubMed  Google Scholar 

  24. Gomar, M. and Yeganegi, S., Microporous Mesoporous Mater., 2017, vol. 252, pp. 167–172. https://doi.org/10.1016/j.micromeso.2017.06.010

    Article  CAS  Google Scholar 

  25. Abishad, P., Niveditha, P., Unni, V., Vergis, J., Kurkure, N.V., Chaudhari, S., Rawool, D.B., and Barbuddhe, S.B., Gut Pathog., 2021, vol. 13, pp. 1–11. https://doi.org/10.1186/s13099-021-00443-3

    Article  CAS  Google Scholar 

  26. Unni, V., Abishad, P., Prasastha Ram, V., Niveditha, P., Yasur, J., John, L., Prejit, N., Juliet, S., Latha, C., Vergis, J., Kurkure, N.V., Barbuddhe, S.B., and Rawool, D.B., Inorg. Nano-Metal Chem., 2022, pp. 1–9. https://doi.org/10.1080/24701556.2022.2078356

  27. Abishad, P., Vergis, J., Unni, V., Ram, V.P., Niveditha, P., Yasur, J., Juliet, S., John, L., Byrappa, K., Nambiar, P., Kurkure, N.V., Barbuddhe, S.B., and Rawool, D.B., Probiotics Antimicrob. Proteins, 2022, vol. 14, pp. 904–914. https://doi.org/10.1007/s12602-022-09961-1

    Article  CAS  PubMed  Google Scholar 

  28. Soomro, N.A., Wu, Q., Amur, S.A., Liang, H., Rahman, A.U., Yuan, Q., and Wei, Y., Colloids Surfaces B Biointerfaces, 2019, vol. 182, p. 110364. https://doi.org/10.1016/j.colsurfb.2019.110364

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a financial grant from National Agricultural Science Fund (ICAR-NASF; NASF/ABA-8007) to SBB, DBR, JV, and NVK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Vergis or K. Byrappa.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Abbreviations: ZIF-8(Fe), zeolite imidazole frameworks with dual metal clusters; MIC, the minimum inhibitory concentrations; MBC, minimum bactericidal concentration; DLE, Drug loading efficiency; DLC, drug loading concentration; MDR, multi-drug resistant; UV-DRS, UV–Vis diffuse reflectance spectroscopy; FTIR, Fourier-transform infrared spectroscopy; PXRD, powder X-ray diffraction; MOF, metal organic frameworks; NPs, nanoparticles; GI, gastrointestinal; EAEC, enteroaggregative E. coli; NTS, non typhoidal Salmonellla; ompC, osmoporin C; DOX, Doxrubicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abishad, P.M., Jayashankar, M., Namratha, K. et al. Synthesis of ZIF-8(Fe) Functionalized with Citral as Potent Antimicrobial Candidate against Multi-Drug Resistant Enteroaggregative Escherichia coli and Non-Typhoidal Salmonella spp.. Russ J Bioorg Chem 49, 360–366 (2023). https://doi.org/10.1134/S1068162023020036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023020036

Keywords:

Navigation