Skip to main content
Log in

Schiff Base Derivatives Based on Ampyrone as Promising Acetylcholinesterase Inhibitors: Synthesis, Spectral Characterization, Biological Activity, and SwissADME Predictions

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In this research, a series of ampyrone-based Schiff base derivatives bearing the biologically active an aryl sulfonate moiety (XXVIII) were successfully synthesized and screened for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. These molecules, most of which were synthesized for the first time (compounds V, XIXV, XVII and XVIII are new, others are known), were completely characterized by elemental analysis and some spectroscopic methods such as mass spectroscopy, FT-IR, 1D NMR (1H- and 13C- NMR) and 2D NMR (COSY and HMQC). The results indicated that all tested molecules inhibited these enzymes at concentrations ranging from 80.4 to 247.1 μM. All tested molecules exhibited higher activities than the standard compound rivastigmine (IC50 = 501 ± 3.08 μM) against AChE. Among the synthesized molecules, the most active molecule was compound (XIII) (IC50 = 92.7 ± 0.9 μM) against AChE. The same molecules displayed lower activities than the standard compounds galanthamine (IC50 =7.96 ± 0.59 μM) and rivastigmine (IC50 = 19.95 ± 0.20 μM) against BChE. Also, physicochemical properties, pharmacokinetic properties, and drug-likeness of all tested molecules (IXVIII) were calculated by using SwissADME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sathya, S., Manogari, B.G, Thamaraiselvi, K., Vaidevi, S., Ruckmani, K., and Devi K.P., Nutr. Neurosci., 2020, vol. 25, pp. 485–501. https://doi.org/10.1080/1028415X.2020.1764290

    Article  PubMed  Google Scholar 

  2. Çınar, E., Başaran, E., Erdoğan, Ö., Çakmak, R., Boğa, M., and Çevik, Ö., J. Chin. Chem. Soc., 2021, vol. 68, pp. 2355–2367. https://doi.org/10.1002/jccs.202100357

    Article  CAS  Google Scholar 

  3. Yan, F., Tian, Y., Huang; Y., Wang, Q., Liu, P., Wang, N., Zhao, F., Zhong, L., Hui, W., and Luo, Y., Biomed. Pharmacother., 2022, vol. 145, p. 112453. https://doi.org/10.1016/j.biopha.2021.112453

    Article  CAS  PubMed  Google Scholar 

  4. Kaundal, R.K., Datusalia, A.K., and Sharma, S.S., Pharmacol. Res., 2022, vol. 175, p. 106018. https://doi.org/10.1016/j.phrs.2021.106018

    Article  CAS  PubMed  Google Scholar 

  5. Mirzaei, G. and Adeli, H., Biomed. Signal. Process. Control., 2022, vol. 72, p. 103293. https://doi.org/10.1016/j.bspc.2021.103293

    Article  Google Scholar 

  6. Ju, Y. and Tam, K.Y., Neural Regener. Res., 2022, vol. 17, pp. 543–549. https://doi.org/10.4103/1673-5374.320970

    Article  CAS  Google Scholar 

  7. Parihar, M.S. and Hemnani, T., J. Clin. Neurosci., 2004, vol. 11, pp. 456–467. https://doi.org/10.1016/j.jocn.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  8. Tang, Y., Zhang, D., Gong, X., and Zheng, J., Biophys. Chem., 2020, vol. 281, p. 106735. https://doi.org/10.1016/j.bpc.2021.106735

    Article  CAS  Google Scholar 

  9. Luo, J.E. and Li, Y.M., Cell Biosci., 2022, vol. 12, pp. 1–12. https://doi.org/10.1186/s13578-021-00738-7

    Article  CAS  Google Scholar 

  10. Ruan, Z. Regen. Res., 2022, vol. 17, pp. 328–329. https://doi.org/10.4103/1673-5374.317975

    Article  CAS  Google Scholar 

  11. Do Carmo, S., Kannel, B., and Cuello, A.C., Cell, 2022, vol. 11, pp. 1–15. https://doi.org/10.3390/cells11010016

    Article  CAS  Google Scholar 

  12. Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K. J. Neurol. Neurosurg. Psychiatry, 1999, vol. 66, pp. 137–147. https://doi.org/10.1136/jnnp.66.2.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quinn, D.M., Chem. Rev., 1987, vol. 87, pp. 955–979. https://doi.org/10.1021/cr00081a005

    Article  CAS  Google Scholar 

  14. Kawashima, K. and Fujii, T., Pharmacol. Ther., 2020, vol. 86, pp. 29–48. https://doi.org/10.1016/S0163-7258(99)00071-6

    Article  Google Scholar 

  15. Topal, M., Int. J. Food Prop., 2019, vol. 22, pp. 1527–1535. https://doi.org/10.1080/10942912.2019.1656234

    Article  CAS  Google Scholar 

  16. Santarpia, L., Grandone, I., Contaldo, F., and Pasanisi, F., J. Cachexia Sarcopenia Muscle, 2013, vol. 4, pp. 31–39. https://doi.org/10.1007/s13539-012-0083-5

    Article  PubMed  Google Scholar 

  17. Massoulie, J., Pezzementi, L., Bon, S., Krejci, E., and Valette, F.M., Prog. Neurobiol., 1993, vol. 41, pp. 31–91. https://doi.org/10.1016/0301-0082(93)90040-Y

    Article  CAS  PubMed  Google Scholar 

  18. Darvesh, S., Curr. Alzheimer Res., 2016, vol. 13, pp. 1173–1177. https://doi.org/10.2174/1567205013666160404120542

    Article  CAS  PubMed  Google Scholar 

  19. Summers, W.K., J. Alzheimer’s Dis., 2006, vol. 9, pp. 439–445. https://doi.org/10.3233/jad-2006-9s350

    Article  CAS  Google Scholar 

  20. Crismon, M.L., Ann. Pharmacother., 1994, vol. 28, pp. 744–751. https://doi.org/10.1177/106002809402800612

    Article  CAS  PubMed  Google Scholar 

  21. Misson, J. and Kendall, M.J., J. Clin. Pharm. Ther., 1997, vol. 22, pp. 251–255. https://doi.org/10.1046/j.1365-2710.1997.10275102.x

    Article  CAS  PubMed  Google Scholar 

  22. Çakmak, R., Başaran, E., and Şentürk, M., Arch. Pharm., 2022, vol. 355, p. e2100430. https://doi.org/10.1002/ardp.202100430

    Article  CAS  Google Scholar 

  23. Barner, E.L. and Gray, S.L., Ann. Pharmacother., 1998, vol. 32, pp. 70–77. https://doi.org/10.1345/aph.17150

    Article  CAS  PubMed  Google Scholar 

  24. Jann, M.W., Shirley, K.L., and Small, G.W., Pharmacokinet. Clin., 2002, vol. 41, pp. 719–739. https://doi.org/10.2165/00003088-200241100-00003

    Article  CAS  Google Scholar 

  25. Prvulovic, D., Hampel, H., and Pantel, J., Expert Opin., Drug Metab. Toxicol., 2010, vol. 6, pp. 345–354. https://doi.org/10.1517/17425251003592137

    Article  CAS  PubMed  Google Scholar 

  26. Sramek, J.J., Frackiewicz, E.J., and Cutler, N.R., Expert Opin. Invest. Drugs, 2000, vol. 9, pp. 2393–2402. https://doi.org/10.1517/13543784.9.10.2393

    Article  CAS  Google Scholar 

  27. Kumari, A. and Singh, R.K., Bioorg. Chem., 2019, vol. 89, p. 103021. https://doi.org/10.1016/j.bioorg.2019.103021

    Article  CAS  PubMed  Google Scholar 

  28. Sicak, Y., Oruç-Emre, E.E., Öztürk, M., Karaküçük-İyidoğan, A., and Nadeem, S., J. Heterocycl. Chem., 2020, vol. 57, pp. 830–841. https://doi.org/10.1002/jhet.3829

    Article  CAS  Google Scholar 

  29. Chauhan, P., Mahajan, S., and Enders, D., Chem. Commun., 2015, vol. 51, p. 12890. https://doi.org/10.1039/C5CC04930J

    Article  CAS  Google Scholar 

  30. Horton, D.A., Bourne, G.T., and Smythe, M.L., Chem. Rev., 2003, vol. 103, pp. 893–930. https://doi.org/10.1021/cr020033s

    Article  CAS  PubMed  Google Scholar 

  31. Brune, K., Acute Pain, 1997, vol. 1, pp. 33–40. https://doi.org/10.1016/S1366-0071(97)80033-2

    Article  CAS  Google Scholar 

  32. Rogosch, T., Sinning, C., Podlewski, A., Watzer, B., Schlosburg, J., Lichtman, A.H., Cascio, M.G., Bisogno, T., Di Marzo, V., Nüsing, R., and Imming, P., Bioorg. Med. Chem., 2012, vol. 20, pp. 101–107. https://doi.org/10.1016/j.bmc.2011.11.028

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida, H., Yanai, H., Namiki, Y., Fukatsu-Sasaki, K., Furutani, N., and Tada, N., CNS Drug Rev., 2006, vol. 12, pp. 9–20. https://doi.org/10.1111/j.1527-3458.2006.00009.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clark, M.P., Laughlin, S.K., Laufersweiler, M.J., Bookland, R.G., Brugel, T.A., Golebiowski, A., Sabat, M.P., Townes, J.A., VanRens, J.C., Djung, J.F., Natchus, M.G., De, B., Hsieh, L.C., Xu, S.C., Walter, R.L., Mekel, M.J., Heitmeyer, S.A., Brown, K.K., Juergens, K., Taiwo, Y.O., and Janusz, M.J., J. Med. Chem., 2004, vol. 47, pp. 2724–2727. https://doi.org/10.1021/jm049968m

    Article  CAS  PubMed  Google Scholar 

  35. Hadi, V., Koh, Y.H., Sanchez, T.W., Barrios, D., Neamati, N., and Jung, K.W., Bioorg. Med. Chem. Lett., 2010, vol. 20, pp. 6854–6857. https://doi.org/10.1016/j.bmcl.2010.08.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chande, M.S., Barve, P.A., and Suryanarayan, V., J. Heterocycl. Chem., 2007, vol. 44, pp. 49–53. https://doi.org/10.1002/jhet.5570440108

    Article  CAS  Google Scholar 

  37. Alam, M.S., Choi, J.H., and Lee, D.U., Bioorg. Med. Chem., 2012, vol. 20, pp. 4103–4018. https://doi.org/10.1016/j.bmc.2012.04.058

    Article  CAS  PubMed  Google Scholar 

  38. Gürsoy, A., Demirayak, Ş., Çapan, G., Erol, K., and Vural, K., Eur. J. Med. Chem., 2000, vol. 35, pp. 359–364. https://doi.org/10.1016/S0223-5234(00)00117-3

    Article  PubMed  Google Scholar 

  39. Mohanram, I. and Meshram, J., Int. Sch. Res. Notices, 2014, vol. 2014, pp. 1–7. https://doi.org/10.1155/2014/639392

    Article  Google Scholar 

  40. Rostom, S.A.F., El-Ashmawy, I.M., Abd El Razik, H.A., Badr, M.H., and Ashour, H.M.A., Bioorg. Med. Chem., 2009, vol. 17, pp. 882–895. https://doi.org/10.1016/j.bmc.2008.11.035

    Article  CAS  PubMed  Google Scholar 

  41. Ghorab, M.M., El-Gazzar, M.G., and Alsaid, M.S., Int. J. Mol. Sci., 2014, vol. 15, pp. 7539–7553. https://doi.org/10.3390/ijms15057539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Başaran, E., Inst. Sci. & Tech., 2021, vol. 11, pp. 2967–2978. https://doi.org/10.21597/jist.963129

    Article  Google Scholar 

  43. Tok, F., Koçyiğit-Kaymakçıoğlu, B., Sağlık, B.N., Levent, S., Özkay, Y., and Kaplancıklı, Z.A., Bioorg. Chem., 2019, vol. 84, pp. 41–50. https://doi.org/10.1016/j.bioorg.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  44. Shaikh, S., Dhavan, P., Singh, P., Uparkar, J., Vaidya, S.P., Jadhav, B.L., and Ramana M.M.V., J. Biomol. Struct. Dyn., 2021, pp. 1–16. https://doi.org/10.1080/07391102.2021.2006088

  45. Yan, L. and Muller, C.E., J. Med. Chem., 2004, vol. 47, pp. 1031–1041. https://doi.org/10.1021/jm0310030

    Article  CAS  PubMed  Google Scholar 

  46. Zuse, A., Schmidt, P., Baasner, S., Böhm, K.J., Muller, K., Gerlach, M., Günther, E.G., Unger, E., and Prinz, H., J. Med. Chem., 2007, vol. 50, pp. 6059–6066. https://doi.org/10.1021/jm0708984

    Article  CAS  PubMed  Google Scholar 

  47. Hou. S., Yi, Y.W., Kang, H.J., Zhang, L., Kim, H.J., Kong, Y., Liu, Y., Wang, K., Kong, H.S., Grindrod, S., Bae, I., and Brown, M.L., J. Med. Chem., 2014, vol. 57, pp. 6342–6353. https://doi.org/10.1021/jm4018042

  48. Carey, J.S., Laffan, D., Thomson. C., and Williams, M.T., Org. Biomol. Chem., 2006, vol. 4, pp. 2337–2347. https://doi.org/10.1039/B602413K

    Article  CAS  PubMed  Google Scholar 

  49. Elder, D., Facchine, K.L., Levy, J.N., Parsons, R., Ridge, D., Semo, L., and Teasdale, A., Org. Process Res. Dev., 2012, vol. 16, pp. 1707–1710. https://doi.org/10.1021/op300216x

    Article  CAS  Google Scholar 

  50. Betts, L.M., Tam, N.C., Kabir, S.M.H., Langler, R.F., and Crandall, I., Aust. J. Chem., 2006, vol. 59, pp. 277–282. https://doi.org/10.1071/CH04299

    Article  CAS  Google Scholar 

  51. Krátký, M., Štěpánková, Š., Vorčáková, K., Švarcová, M., and Vinšová, J., Molecules, 2016, vol. 21, pp. 191–201. https://doi.org/10.3390/molecules21020191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krátký, M., Štěpánková, Š., Vorčáková, K., and Vinšová, J., Bioorg. Chem., 2015, vol. 58, pp. 48–52. https://doi.org/10.1016/j.bioorg.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  53. Sicak, Y., Turk. J. Chem., 2022, vol. 46, pp. 665–676. https://doi.org/10.3906/kim-2107-27

    Article  CAS  Google Scholar 

  54. Sicak, Y. Med. Chem. Res., 2021, vol. 30, pp. 1557–1568. https://doi.org/10.1007/s00044-021-02756-z

    Article  CAS  Google Scholar 

  55. Tatar, G. and Kurşun Aktar, B.S., Int. J. Adv. Eng. Pure. Sci., 2021, vol. 33, pp. 660–669. https://doi.org/10.7240/jeps.945430

    Article  Google Scholar 

  56. Chen, E.M., Lu, P.J., and Shaw, A.Y., J. Heterocycl. Chem., 2012, vol. 49, pp. 792–798. https://doi.org/10.1002/jhet.859

    Article  CAS  Google Scholar 

  57. Zemplen, G. and Kisfaludy, L., Chem. Ber., 1960, vol. 93, pp. 1125–1128. https://doi.org/10.1002/cber.19600930521

    Article  CAS  Google Scholar 

  58. Mahapatra, M.K., Kumar, R., and Kumar, M., Med. Chem. Res., 2018, vol. 27, pp. 476–487. https://doi.org/10.1007/s00044-017-2074-8

    Article  CAS  Google Scholar 

  59. Julia, M., Manoury, P., and Voillaume, C., Bull. Soc. Chim. Fr., 1965, vol. 5, pp. 1411.

    Google Scholar 

  60. Zhang, Q.Z., Zhao, Y.L., Chen, X., and Yu, M., Acta Cryst., 2006, vol. E62, p. o5711. https://doi.org/10.1107/S1600536806048938

    Article  CAS  Google Scholar 

  61. Mahapatra, M.K., Kumar, R., and Kumar, M., Bioorg. Chem., 2017, vol. 71, pp. 1–9. https://doi.org/10.1016/j.bioorg.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  62. Olivera, R., SanMartin, R., Churruca, F., and Domínguez, E., J. Org. Chem., 2002, vol. 67, pp. 7215–7225. https://doi.org/10.1021/jo025767j

    Article  CAS  PubMed  Google Scholar 

  63. Chen, X. and Yu, M., Acta Cryst., 2007, vol. 63, p. o2936. https://doi.org/10.1107/S1600536806043546

    Article  CAS  Google Scholar 

  64. Zhao, Y.L., Zhang, Q.Z., Chen. X., and Yu, M., Acta Cryst., 2006, vol. E62, p. o4590. https://doi.org/10.1107/S1600536806037950

    Article  CAS  Google Scholar 

  65. Zilbeyaz, K., Stellenboom, N., Guney, M., Oztekin, A., and Senturk, M., J. Biochem. Mol. Toxicol., 2018, vol. 32, p. e22210. https://doi.org/10.1002/jbt.22210

    Article  CAS  PubMed  Google Scholar 

  66. http://www.swissadme.ch/. Accessed January 1, 2022.

Download references

ACKNOWLEDGMENTS

The author would like to thank Prof. Dr. Murat Şentürk (Department of Biochemistry of Faculty of Pharmacy of Ağrı İbrahim Çeçen University) for the laboratory support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyüp Başaran.

Ethics declarations

The author declares that he has no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by the author.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyüp Başaran Schiff Base Derivatives Based on Ampyrone as Promising Acetylcholinesterase Inhibitors: Synthesis, Spectral Characterization, Biological Activity, and SwissADME Predictions. Russ J Bioorg Chem 49, 114–126 (2023). https://doi.org/10.1134/S1068162023010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023010065

Keywords:

Navigation