Skip to main content

Advertisement

Log in

An Identification and a Quantitative Assessment of Phenolic Compounds in a Butanol Fraction of Extract from Cosmary Flowers (Tanacetum vulgare)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The costmary (Tanacetum vulgare L., syn.: Chrysanthemum vulgare (L). Bernh) is a perennial medicinal plant with a Euro-Asian type of a habitat. The costmary extracts have a wide spectrum of a biological and pharmacological activity. A drug with high choleretic and anti-inflammatory activity was created on the basis of the butanol fraction of the extract from the T. vulgare flowers in the All-Russian Institute of Medicinal and Aromatic Plants. The goal of this investigation was a determination of the qualitative composition and the quantitative content of phenolic compounds of the butanol fraction which are considered to be probably responsible for the biological activity of the extract. High performance liquid chromatography with diode-array detection in a combination with high-resolution mass spectrometry (UPLC-PDA-HRMS) was used for the analysis. We demonstrated that seven phenolic compounds were present in the butanol fraction of T. vulgare, including the first-isolated myricetin-3-glucoside. The content of the phenolic compounds achieved 90%, and neochlorogenic, 3,5-, and 4,5-dicaffeoylquinic acids were the main compounds (their content was 69%). Thus, the high content of caffeoylquinic acids could be responsible for the pharmacological activity of the drug based on the butanol fraction of the extract from the costmary flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), 14th ed., Moscow, 2018. https://pharmacopoeia.ru/gosudarstvennaya-farmakopeya-14-izdaniya.

  2. Mot, C.A., Lupitu, A.I., Bangau, S., Ovan, C.I., Copolovici, D.M., Purza, L., Melinte, C.E., and Copolovici, L., Composition and antioxidant activity of aqueous extracts obtained from herb of tansy (Tanacetum vulgare L.), Rev. Chim., 2018, vol. 69, no. 5, pp. 1041–1044. https://doi.org/10.37358/RC.18.5.6257

    Article  Google Scholar 

  3. Onozato, T., Nakamura, C.V., Cortez, D.A., Dias Filho, B.P., and Ueda-Nakamura, T., Tanacetum vulgare: Antiherpes virus activity of crude extract and the purified compound parthenolide, Phytother. Res., 2009, vol. 23, no. 6, pp. 791–796. https://doi.org/10.1002/ptr.2638

    Article  Google Scholar 

  4. Alvarez, A.L., Habtemariam, S., Juan-Badaturuge, M., Jackson, C., and Parra, F., In vitro anti HSV-1 and HSV-2 activity of Tanacetum vulgare extracts and isolated compounds: An approach to their mechanisms of action, Phytother. Res., 2011, vol. 25, no. 2, pp. 296–301. https://doi.org/10.1002/ptr.3382

    Article  Google Scholar 

  5. Goun, E.A., Petrichenko, V.M., Solodnikov, S.U., Suhinina, T.V., Kline, M.A., Cunningham, G., Nguyen, C., and Miles, H., Anticancer and antithrombin activity of Russian plants, J. Ethnopharmacol., 2002, vol. 81, no. 3, pp. 337–342. https://doi.org/10.1016/s0378-8741(02)00116-2

    Article  Google Scholar 

  6. Ivănescu, B., Tuchiluş, C., Corciovă, A., Lungu, C., Mihai, C.T., Gheldiu, A.M., and Vlase, L., Antioxidant, antimicrobial and cytotoxic activity of Tanacetum vulgare, Tanacetum corymbosum and Tanacetum macrophyllum extracts, Farmacia, 2018, vol. 66, no. 2, pp. 282–288.

    Google Scholar 

  7. Vasileva, A., Iliev, I.A., Lozanov, V., Dimitrova, M., Mitev, V., and Ivanov, I., In vitro study on the antitumor activity of Tanacetum vulgare L. extracts, Bulg. Chem. Commun., 2019, vol. 51, no. 2, pp. 249–255. https://doi.org/10.34049/bcc.51.2.5035

    Article  Google Scholar 

  8. Mureşan, M.L., Antimicrobial effects of the ethanolic extracts and essential oils of Tanacetum vulgare L. from Romania, Acta Univ. Cibin., Ser. E: Food Technol., 2015, vol. 19, no. 2, pp. 75–80. https://doi.org/10.1515/aucft-2015-0016

    Article  Google Scholar 

  9. Zolotaikina, M.Y., Hontova, T.M., Kotov, A.H., Ilyina, T.V., and Kryvoruchko, O.V., Study of dry extract of tansy (Tanacetum vulgare) using the method of high-performance liquid chromatography, Pharma Chem., 2017, vol. 9, no. 11, pp. 1–4.

    Google Scholar 

  10. Kalko, K.O., Mishchenko, O.Y., Derymedvid, L.V., Zolotaikina, M.Y., Gontova, T.M., Mashtaler, V.V., and Kutsenko, S.A., A screening study of hepatoprotective activity of liquid extract from common tansy Tanacetum vulgare L. herb in the setting of subchronic hepatitis in rats, Res. J. Pharm. Technol., 2018, vol. 11, no. 10, pp. 4393–4396. https://doi.org/10.5958/0974-360X.2018.00803.X

    Article  Google Scholar 

  11. Kameri, A., Kocani, F., Hashani, Z., Kurteshi, K., Kamberi, B., Kurti, A., and Haziri, A., Antifungal and synergistic effects of the ethyl acetate extract of Tanacetum vulgare (L.) against Candida albicans, Med. Sci. Monitor Basic Res., 2019, vol. 27, pp. 179–186. https://doi.org/10.12659/MSMBR.917394

    Article  Google Scholar 

  12. Kurkina, A.V., Study of the flavonoid composition of tansy (Tanacetum vulgare L.) flowers, Khim. Rastit. Syr’ya, 2011, no. 4, pp. 209–212.

  13. Kurkina, A.V., Kalabukhova, E.A., Vlasova, G.I., Demidova, G.A., and Avdeeva, E.V., The new approaches to the standardization of tansy flowers (Tanacetum vulgare L.), Sovrem. Probl. Nauki Obrazov., 2013, no. 5, pp. 628–628.

  14. Uehara, A., Akiyama, S., and Iwashina, T., Foliar flavonoids from Tanacetum vulgare var. boreale and their geographical variation, Nat. Product Commun., 2015, vol. 10, pp. 403–405. https://doi.org/10.1177/1934578X1501000307

    Article  Google Scholar 

  15. Glyzin, V.I., Smirnova, L.P., and Ob’edkova, E.F., The method of obtaining funds with choleretic activity, RF Inventor’s Certificate, 1994, no. 1361760.

  16. Guijas, C., Montenegro-Burke, J.R., Domingo-Almenara, X., Palermo, A., and Warth, B., MTELIN: A technology platform for identifying knowns and unknowns, Anal. Chem., 2018, vol. 90, pp. 3156–3164. https://doi.org/10.1021/acs.analchem.7b04424

    Article  Google Scholar 

  17. Wishart, D.S., Feunang, Y.D., and Marcu, A., HMDB 4.0: The human metabolome database for 2018, Nucl. Acids Res., 2018, vol. 46, no. D1, pp. 608–617. .https://doi.org/10.1093/nar/gkx1089

    Article  Google Scholar 

  18. Devrnja, N., Andjelković, B., Arandjelović, S., Radulović, S., Soković, M., Krstić-Milošević, M., Mihailo, R., and ćalić, D., Comparative studies on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts, South Afric. J. Botany, 2017, vol. 111, pp. 212–221. https://doi.org/10.1016/j.sajb.2017.03.028

    Article  Google Scholar 

  19. Yur, S., Tekin, M., Göger, F., Başer, K.H.C., Özek, T., and Özek, G., Composition and potential of Tanacetum haussknechtii bornm. Grierson as antioxidant and inhibitor of acetylcholinesterase, tyrosinase, and α-amylase enzymes, Int. J. Food Propert., 2017, vol. 20, pp. 2359–2378. https://doi.org/10.1080/10942912.2017.1370600

    Article  Google Scholar 

  20. Wu, C., Chen, F., Wang, X., Wu, Y., Dong, M., He, G., Galyean, R.D., He, L., and Huang, G., Identification of antioxidant phenolic compounds in feverfew (Tanacetum parthenium) by HPLC ESI MS/MS and NMR, Phytochem. Anal., 2007, vol. 18, pp. 401–410. https://doi.org/10.1002/pca.995

    Article  Google Scholar 

  21. Venditti, A., Frezza, C., Sciubba, F., Serafini, M., Bianco, A., Cianfaglione, K., Lupidi, G., Quassinti, L., Bramucci, M., and Maggi, F., Volatile components, polar constituents and biological activity of tansy daisy (Tanacetum macrophyllum (Waldst. et Kit.) Schultz Bip.), Ind. Crops Products, 2018, vol. 118, pp. 225–235. https://doi.org/10.1016/j.indcrop.2018.03.056

    Article  Google Scholar 

  22. Gevrenova, R., Zheleva-Dimitrova, D., Balabanova, V., Voynikov, Y., Sinan, K.I., Mahomoodally, M.F., and Zengin, G., Integrated phytochemistry, bio-functional potential and multivariate analysis of Tanacetum macrophyllum (Waldst. & Kit.) Sch.bip. and Telekia speciosa (Schreb.) Baumg. (Asteraceae), Ind. Crops Products, 2020, vol. 155, p. 112817. https://doi.org/10.1016/j.indcrop.2020.112817

    Article  Google Scholar 

  23. Nam, K.W., Kim, J., Hong, J.J., Choi, J.H., Mar, W., Cho, M.H., Kim, Y.M., Oh, S.R., Lee, H.K., Nam, K.H., and Oh, G.T., Inhibition of cytokine-induced IkB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice, Atherosclerosis, 2005, vol. 180, pp. 27–35. https://doi.org/10.1016/j.atherosclerosis.2004.11.022

    Article  Google Scholar 

  24. Akanda, M.R., Uddin, M.N., Kim, I.-S., Ahn, D., Tae, H.-J., and Park, B.-Y., The biological and pharmacological roles of polyphenol flavonoid tilianin, Eur. J. Pharmacol., 2019, vol. 842, pp. 291–297. https://doi.org/10.1016/j.ejphar.2018.10.044

    Article  Google Scholar 

  25. Zhen, Z.G., Ren, S.H., Ji, H.M., Ji, H.M., Ma, J.H., Ding, X.M., Feng, F.Q., Chen, S.L., Zou, P., Ren, J.R., and Jia, L., Linarin suppresses glioma through inhibition of NF-kB/p65 and up-regulating p53 expression in vitro and in vivo, Biomed. Pharmacother., 2017, vol. 95, pp. 363–374. https://doi.org/10.1016/j.biopha.2017.08.023

    Article  Google Scholar 

  26. Xu, Z., Sun, X., Lan, Y., Han, C., Zhang, Y., and Chen, G., Linarin sensitizes tumor necrosis factor-related apoptosis (TRAIL)-induced ligand-triggered apoptosis in human glioma cells and in xenograft nude mice, Biomed. Pharmacother., 2017, vol. 95, pp. 1607–1618. https://doi.org/10.1016/j.biopha.2017.08.021

    Article  Google Scholar 

  27. Yonekawa, M., Shimizu, M., Kaneko, A., Matsumura, J., and Takahashi, H., Suppression of R5-type of HIV-1 in CD4+NKT cells by Vδ1+T cells activated by flavonoid glycosides, hesperidin and linarin, Sci. Rep., 2019, vol. 9, p. 7506. https://doi.org/10.1038/s41598-019-40587-6

    Article  Google Scholar 

  28. Kim, B., Lee, J.H., Seo, M.J., Eom, S.H., and Kim, W., Linarin down-regulates phagocytosis, pro-inflammatory cytokine production, and activation marker expression in RAW264.7 macrophages, Food Sci. Biotechnol., 2016, vol. 25, pp. 1437–1442. https://doi.org/10.1007/s10068-016-0223-3

    Article  Google Scholar 

  29. Motaal, A.A., Ezzat, S.M., Tadros, M.G., and El-Askary, H.I., In vivo anti-inflammatory activity of caffeoylquinic acid derivatives from solidago virgaurea in rats, Pharm. Biol., 2016, vol. 54, pp. 2864–2870. https://doi.org/10.1080/13880209.2016.1190381

    Article  Google Scholar 

  30. Cho, J.-Y., Kim, J.Y., Lee, Y.G., Lee, H.J., Shim, H.J., Lee, J.H., Kim, S.-J., Ham, K.-S., and Moon, J.-H., Four new dicaffeoylquinic acid derivatives from glasswort (Salicornia herbacea L.) and their antioxidative activity, Molecules, 2016, vol. 21, p. 1097. https://doi.org/10.3390/molecules21081097

    Article  Google Scholar 

  31. Mijangos-Ramos, I.F., Zapata-Estrella, H.E., Ruiz-Vargas, J.A., Escalante-Erosa, F., Gómez-Ojeda, N., García-Sosa, K., Cechinel-Filho, V., Meira-Quintão, N.L., and Peña-Rodríguez, L.M., Bioactive dicaffeoylquinic acid derivatives from the root extract of Calea urticifolia, Rev. Brasil. Farmacognos., 2018, vol. 28, pp. 339–343. .https://doi.org/10.1016/j.bjp.2018.01.010

    Article  Google Scholar 

  32. McDougall, B., King, P.J., Wu, B.W., Hostomsky, Z., Reinecke, M.G., and Robinson, W.E., Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase, Antimicrob. Agents Chemother., 1998, vol. 42, pp. 140–146. https://doi.org/10.1128/AAC.42.1.140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ossipov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

CONCLUSIONS

The composition and content of the phenolic compounds in the butanol fraction of the costmary flowers (Tanаcetum vulgare L.) which exhibited high cholagogue and anti-inflammatory activity were studied by the UPLC-PDA-HRMS method. The seven phenolic compounds were identified, including the first-discovered myricetin-3-glucoside. The content of the phenolic compounds in the butanol fraction was shown to achieve 90%. Neochlorogenic and 3,5-dicaffeoylquinic acids were found to be the main compounds (their content was as high as 69%). These results evidenced that the high content of caffeoylquinic acids could be responsible for the pharmacological activity of the medicine on the basis of the butanol fraction of the extract from the costmary flowers.

Additional information

Translated by L. Onoprienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krol, T.A., Zinnatshina, L.V., Baleev, D.N. et al. An Identification and a Quantitative Assessment of Phenolic Compounds in a Butanol Fraction of Extract from Cosmary Flowers (Tanacetum vulgare). Russ J Bioorg Chem 48, 1454–1460 (2022). https://doi.org/10.1134/S1068162022070135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022070135

Keywords:

Navigation