Skip to main content
Log in

CP MAS 13C NMR Spectroscopy in Determination of Species-Specific Differences in Wood Composition

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

In recent years, solid-state 13C NMR spectroscopy using the techniques of cross-polarization (CP) and magic angle spinning (MAS) has been used to analyze plant materials, including wood. The composition, structure, and behavior of wood components determine the properties of wood materials in various conditions and are therefore important to know. In this work, differences in wood composition were studied for several tree species of central Russia (birch, aspen, spruce, and larch) by CP MAS 13C NMR spectroscopy. Peaks of CP MAS 13C NMR spectra were assigned to the main components of the wood. Cellulose was shown to occur in amorphous and crystalline forms; the presence of lignin was unambiguously confirmed by signals from aromatic carbon atoms; and hemicellulose was detected by signals from carbon atoms of the methyl groups of acetylxylose and L-rhamnose. Integral intensities were used to estimate the total proportion of cellulose and hemicellulose in relation to lignin. The lignin content in wood was observed to be maximal in the coniferous species (spruce and larch) and minimal in the deciduous species (aspen and birch).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Sjöström, E., Wood Chemistry, Fundamentals and Applications, San Diego: Academic, 1993. https://doi.org/10.1016/C2009-0-03289-9

    Book  Google Scholar 

  2. Azarov, V.I., Burov, A.V., and Obolenskaya, A.V., Khimiya drevesiny i sinteticheskikh polimerov (Chemistry of Wood and Synthetic Polymers), St. Petersburg, 2010.

  3. Hon, D.N.-S. and Shiraishi, N., Wood and Cellulosic Chemistry, New York: Marcel Dekker, 2001.

    Google Scholar 

  4. Lenz, R.W., Cellulose, Structure, Accessibility and Reactivity, Philadelphia: PA, 1993. https://doi.org/10.1002/pola.1994.080321221

    Book  Google Scholar 

  5. Kamide, K., Cellulose and Cellulose Derivatives. Molecular Characterization and its Applications, Amsterdam: Elsevier Science, 2005.

    Google Scholar 

  6. Glasser, W.G. and Sarkanen, S., Lignin: Properties and Materials, ACS Symp. Ser., Washington, DC: Am. Chem. Soc., 1989.

    Book  Google Scholar 

  7. Katoh, E. and Ando, I., High resolution solid state NMR, 13C, in Encyclopedia of Spectroscopy and Spectrometry, Amsterdam: Elsevier, 2017, pp. 75–85. https://doi.org/10.1016/B978-0-12-803224-4.00283-1

    Book  Google Scholar 

  8. Tongyin, Yu. and Mingming, G., Recent developments in 13C solid state high-resolution NMR of polymers, Prog. Polym. Sci., 1990, vol. 15, no. 6, pp. 825–908. https://doi.org/10.1016/0079-6700(90)90024-U

    Article  Google Scholar 

  9. Xu, J., Wang, Q., Li, S., and Deng, F., Solid-State NMR in Zeolite Catalysis, Singapore: Springer, 2019. https://doi.org/10.1007/978-981-13-6967-4_1

    Book  Google Scholar 

  10. Deschamps, M., Ultrafast magic angle spinning nuclear magnetic resonance, Ann. Rep. NMR Spectrosc., 2014, vol. 81, pp. 109–144. https://doi.org/10.1016/b978-0-12-800185-1.00003-6

    Article  CAS  Google Scholar 

  11. Gidley, M.J., High-resolution solid-state NMR of food materials, Trends Food Sci. Tech., 1992, no. 3, pp. 231–236. https://doi.org/10.1016/0924-2244(92)90197-5

  12. Conte, P., Spaccini, R., and Piccolo, A., State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter, Prog. Nucl. Magn. Reson. Spectrosc., 2004, vol. 44, pp. 215–223. https://doi.org/10.1016/j.pnmrs.2004.02.002

    Article  CAS  Google Scholar 

  13. Mao, J., Cao, X., Olk, D.C., Chu, W., and Schmidt-Rohr, K., Advanced solid-state NMR spectroscopy of natural organic matter, Prog. Nucl. Magn. Reson. Spectrosc., 2017, vol. 100, pp. 17–51. https://doi.org/10.1016/j.pnmrs.2016.11.003

    Article  CAS  Google Scholar 

  14. Gil, A.M. and Neto, C.P., Solid-state NMR studies of wood and other lignocellulosic materials, Ann. Rep. NMR Spectrosc., 1999, vol. 37, pp. 75–117. https://doi.org/10.1016/S0066-4103(08)60014-9

    Article  CAS  Google Scholar 

  15. Love, G.D., Snape, C.E., and Jarvis, M.C., Determination of the aromatic lignin content in oak wood by quantitative solid state 13C-NMR, Biopolymers, 1992, vol. 32, no. 9, pp. 1187–1192. https://doi.org/10.1002/bip.36032090810.1002/bip.360320908

    Article  CAS  Google Scholar 

  16. Santoni, I., Callone, E., Sandak, A., Sandak, J., and Diré, S., Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance, Carbohydr. Polym., 2015, vol. 11, pp. 710–721. https://doi.org/10.1016/j.carbpol.2014.10.057

    Article  CAS  Google Scholar 

  17. Popescu, C., Larsson, P., Tibirna, C., and Vasile, C., Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy, Appl. Spectrosc., 2010, vol. 64, no. 9, pp. 1054–1060. https://doi.org/10.1366/000370210792434413

    Article  CAS  Google Scholar 

  18. Melkior, T., Barthomeuf, C., and Bardet, M., Inputs of solid-state NMR to evaluate and compare thermal reactivity of pine and beech woods under torrefaction conditions and modified atmosphere, Fuel, 2017, vol. 187, pp. 250–260. https://doi.org/10.1016/j.fuel.2016.09.031

    Article  CAS  Google Scholar 

  19. Hua, X., Capretti, G., Focher, B., Marzetti, A., Kokta, B.V., and Kaliaguine, S., Characterization of aspen explosion pulp by CP/MAS 13C NMR, Appl. Spectrosc., 1993, vol. 47, no. 10, pp. 1693–1695. https://doi.org/10.1366/0003702934334822

    Article  CAS  Google Scholar 

  20. Cao, X., Pignatello, J.J., Li, Yu., Lattao, Ch., Chappell, M.A., Chen, N., Miller, L.F., and Mao, J., Characterization of wood chars produced at different temperatures using advanced solid-state 13C NMR spectroscopic techniques, Energy Fuels, 2012, vol. 26, no. 9, pp. 5983–5991. https://doi.org/10.1021/ef300947s

    Article  CAS  Google Scholar 

  21. Kostryukov, S.G., Araslankin, S.V., and Petrov, P.S., Determination of degree of substitution (DS) and molar substitution (MS) of cellulose ethers by solid-state 13C NMR spectroscopy, Khim. Rastit. Syr’ya, 2017, no. 4, pp. 31–40. https://doi.org/10.14258/jcprm.2017041860

  22. Liu, R., Chen, Yu., and Cao, J., Characterization and properties of organo-montmorillonite modified lignocellulosic fibers and their interaction mechanisms, RSC Adv., 2015, vol. 5, no. 94, pp. 76708–76717. https://doi.org/10.1039/C5RA12245G

    Article  CAS  Google Scholar 

  23. Holtman, K.M., Chang, H., Jameel, H., and Kadla, J.F., Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques, J. Wood Chem. Technol., 2006, vol. 26, no. 1, pp. 21–34. https://doi.org/10.1080/02773810600582152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kostryukov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostryukov, S.G., Petrov, P.S., Masterova, Y.Y. et al. CP MAS 13C NMR Spectroscopy in Determination of Species-Specific Differences in Wood Composition. Russ J Bioorg Chem 48, 1441–1447 (2022). https://doi.org/10.1134/S1068162022070111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022070111

Keywords:

Navigation