Skip to main content
Log in

Study of the Content of Antioxidants and Their Activity in Concentrated Extracts of Cranberry (Vaccinium oxycoccus), Sea Buckthorn (Hippophae rhamnoides L.), Blackberry (Rubus fruticosus), Guelder Rose (Viburnum opulus L.) and Mountain Ash (Sorbus aucuparia L.)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

Extracts and their concentrates can be considered as a source of biologically active ingredients of food products and as food additives to increase the consumption of useful substances of berries. The benefits gained from their use lead to the development of advanced technologies that can allow them to be extracted from the feedstock without significantly compromising the biological activity of the feedstock. In this paper, we studied the content of antioxidants and their activity in concentrated extracts of cranberry (Vaccinium oxycoccus), sea buckthorn (Hippophae rhamnoides L.), blackberry (Rubus fruticosus), guelder rose (Viburnum opulus L.) and mountain ash (Sorbus aucuparia L.) berries. For all extracts, the total content of phenolic compounds, flavonoids and anthocyanins, antioxidant activity according to the DPPH method and iron-reducing antioxidant activity (FRAP) were determined. Concentrated extracts of guelder rose contain the largest amount of phenolic compounds (9.3 ± 0.3 mol HA/L) , flavonoids (1.96 ± 0.08 mol K/L) and anthocyanins (0.26 ± 0.02 mol CG/L) among the studied extracts. There is also a high total content of phenolic substances and flavonoids in blackberry and rowan extracts (5.7 mol HA/L, 1.33 mol K/L and 4.7 mol HA/L, 192 mol K/L, respectively) . The antioxidant activity of the extract of guelder rose berries showed a directly proportional dependence on the content of biologically active compounds in it: DPPH-method, 2.4 mg/mL; FRAP-method, 39.99 mmol Fe2+/kg. Also, high levels were found in concentrated extracts of blackberries, sea buckthorn and mountain ash. It is the extracts of guelder rose, blackberry and mountain ash that are recommended to be used in the production of food products to enrich them with biologically active substances and give them antioxidant properties. Cranberry and sea buckthorn extracts can be used in combination with other extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yang, B. and Kortesniemi, M., Clinical evidence on potential health benefits of berries, Curr. Opin. Food Sci., 2015, vol. 2, pp. 36–42. https://doi.org/10.1016/j.cofs.2015.01.002

    Article  Google Scholar 

  2. Rodriguez-Mateos, A. et al., Berry (poly)phenols and cardiovascular health, J. Agric. Food Chem., 2014, vol. 62, no. 18, pp. 3842–3851. https://doi.org/10.1021/jf403757g

    Article  CAS  Google Scholar 

  3. Sevenich, R. and Mathys, A., Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: A review, Compreh. Rev. Food Sci. Food Safety, 2018, vol. 1, pp. 1–17. https://doi.org/10.1111/1541-4337.12348

    Article  Google Scholar 

  4. Skrovankova, S. et al., Bioactive compounds and antioxidant activity in different types of berries, Int. J. Mol. Sci., 2015, vol. 16, no. 10, pp. 24673–24706. https://doi.org/10.3390/ijms161024673

    Article  CAS  Google Scholar 

  5. Nowacka, M. et al., Changes of mechanical and thermal properties of cranberries subjected to ultrasound treatment, Int. J. Food Eng., 2017, vol. 13. https://doi.org/10.1515/ijfe-2016-0306

  6. Nowacka, M. et al., Effect of ultrasound treatment during osmotic dehydration on bioactive compounds of cranberries, Ultrasonics, 2018, vol. 83, pp. 18–25. https://doi.org/10.1016/j.ultras.2017.06.022

    Article  CAS  Google Scholar 

  7. Wei, E. et al., Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries, Int. J. Biol. Macromol., 2019, vol. 123, pp. 280–290. https://doi.org/10.1016/j.ijbiomac.2018.11.074

    Article  CAS  Google Scholar 

  8. Zielinska, A. and Nowak, I., Abundance of active ingredients in sea-buckthorn oil, Lipids Health Disease, 2017, vol. 16, no. 1, pp. 95–106. https://doi.org/10.1186/s12944-017-0469-7

    Article  CAS  Google Scholar 

  9. Marsinach, M.S. and Cuenca, A.P., The impact of sea buckthorn oil fatty acids on human health, Lipids Health Disease, 2019, vol. 18, no. 1, p. 145. https://doi.org/10.1186/s12944-019-1065-9

    Article  Google Scholar 

  10. Pundir, S. et al., Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review, J. Ethnopharmacol., 2021, vol. 266, p. 113459. https://doi.org/10.1016/j.jep.2020.113459

    Article  CAS  Google Scholar 

  11. Ciesarova, Z. et al., Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review, Food Res. Int., 2020, vol. 133, p. 109170. https://doi.org/10.1016/j.foodres.2020.109170

    Article  CAS  Google Scholar 

  12. Tomas, M. et al., Effect of different soluble dietaryfibres on the phenolic profile of blackberrypuree subjected toin vitrogastrointestinal digestion and large intestinefermentation, Food Res. Int., 2020, vol. 130, p. 1089542. https://doi.org/10.1016/j.foodres.2019.108954

    Article  CAS  Google Scholar 

  13. Nogueira, G. et al., Incorporation of spray dried and freeze dried blackberry particles in edible films: Morphology, stability to pH, sterilization and biodegradation, Food Packag. Shelf Life, 2019, vol. 20, p. 100313. https://doi.org/10.1016/j.fpsl.2019.100313

    Article  Google Scholar 

  14. Kraujalyte, V. et al., Antioxidant properties and polyphenolic compositions of fruits from different european cranberrybush (Viburnum opulus L.) genotypes, Food Chem., 2013, vol. 141, pp. 3695–3702. https://doi.org/10.1016/j.foodchem.2013.06.054

    Article  CAS  Google Scholar 

  15. Barak, H. et al., Influence of in vitro human digestion on the bioavailability of phenolic content and antioxidant activity of Viburnum opulus L. (European cranberry) fruit extracts, Ind. Crops Products, 2019, vol. 131, pp. 62–69. https://doi.org/10.1016/j.indcrop.2019.01.037

    Article  CAS  Google Scholar 

  16. Ersoy, N. et al., Evaluation of European cranberrybush (Viburnum opulus L.) genotypes for agro-morphological, biochemical and bioactive characteristics in turkey, Folia Horticult., 2017, vol. 29, pp. 181–188. https://doi.org/10.1515/fhort-2017-0017

    Article  Google Scholar 

  17. Shikov, A.N. et al., Medicinal plants of the Russian pharmacopoeia; their history and applications, J. Ethnopharmacol., 2014, vol. 154, no. 3, pp. 481–536. https://doi.org/10.1016/j.jep.2014.04.007

    Article  Google Scholar 

  18. Zymone, K. et al., Phytochemical profiling of fruit powders of twenty Sorbus L. cultivars, Molecules, 2018, vol. 23, no. 10, p. 2593. https://doi.org/10.3390/molecules23102593

    Article  CAS  Google Scholar 

  19. Bobinaite, R. et al., Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.), Food Res. Int., 2020, vol. 136, p. 109310. https://doi.org/10.1016/j.foodres.2020.109310

    Article  CAS  Google Scholar 

  20. Baby, B. et al., Antioxidant and anticancer properties of berries, Crit. Rev. Food Sci. Nutrit., 2018, vol. 58, no. 15, pp. 2491–2507. https://doi.org/10.1080/10408398.2017.1329198

    Article  CAS  Google Scholar 

  21. Eremeeva, N.B. et al., Ultrasonic and microwave activation of raspberry extract: Antioxidant and anti-carcinogenic properties, Foods Raw Mater., 2019, vol. 7, no. 2, pp. 264–273. https://doi.org/10.21603/2308-4057-2019-2-264-273

    Article  CAS  Google Scholar 

  22. Cai, M. et al., Behavior and rejection mechanisms of fruit juice phenolic compounds in model solution during nanofiltration, J. Food Eng., 2017, vol. 195, pp. 97–104. https://doi.org/10.1016/j.jfoodeng.2016.09.024

    Article  CAS  Google Scholar 

  23. Demidova, A.V. et al., Influence of blanching on the physical and chemical properties and antioxidant activity of fruit raw materials cherries, plums, blank chokeberry, strawberry, Pishch. Prom-st’., 2016, no. 2, pp. 40–43.

  24. Stryukova A.D. et al., Frozen berries – effective antioxidant for whole year, Pishch. Prom-st’, 2013, no. 3, pp. 28–31.

  25. Cheigh, C.I. et al., Enhanced extraction of flavanones hesperidin and narirutin from citrus unshiu peel using subcritical water, Int. J. Food Eng., 2012, vol. 110, no. 3, pp. 472–477. https://doi.org/10.1016/j.jfoodeng.2011.12.019

    Article  CAS  Google Scholar 

  26. M’hirin, N. et al., Effect of different operating conditions on the extraction of phenolic compounds in orange peel, Food Bioprod. Process., 2015, vol. 69, pp. 161–170. https://doi.org/10.1016/j.fbp.2015.07.010

    Article  CAS  Google Scholar 

  27. Hajimehdipoor, H. et al., Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds, Res. J. Pharmacogn., 2014, vol. 1, no. 3, pp. 35–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Eremeeva.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeeva, N.B., Makarova, N.V. Study of the Content of Antioxidants and Their Activity in Concentrated Extracts of Cranberry (Vaccinium oxycoccus), Sea Buckthorn (Hippophae rhamnoides L.), Blackberry (Rubus fruticosus), Guelder Rose (Viburnum opulus L.) and Mountain Ash (Sorbus aucuparia L.). Russ J Bioorg Chem 48, 1392–1398 (2022). https://doi.org/10.1134/S1068162022070044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022070044

Keywords:

Navigation