Skip to main content
Log in

Polymers of 2,5-Dihydroxybenzoic Acid Induce Formation of Spheroids in Mammalian Cells

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Cells attached to a substrate and grown in a two dimensional (2D) or suspension culture cannot accurately replicate intercellular interactions in tissues and organs. Spheroids, being three-dimensional (3D) formations, more accurately reproduce the structure of organs or neoplasms, and compared to 2D cultures, demonstrate increased survival, corresponding morphology, and a hypoxic core, which is observed in native tumors in vivo. Tumor cell spheroids also represent models of the metastatic process. Therefore, spheroids are currently widely used for testing new anticancer drugs. However, obtaining and using 3D cultures can be associated with a number of difficulties, such as the need for expensive reagents and equipment; a low rate of formation of spheroids of the required size; and occurrence of long-term changes in cell metabolism, which depend on the methods used to create spheroids. We have found that incubation of tumor and normal cells in the presence of polymers of 2,5-dihydroxybenzoic acid (2,5-DHBA), which are nontoxic to cells, can induce the formation of 3D structures. Based on this, a new method for the rapid production of 3D cultures was developed. This approach does not require the use of additional equipment or expensive reagents and does not have a long-term effect on cell homeostasis. The spheroids obtained by this method represent models of three-dimensional structures and can be used for biological studies of intercellular interactions and screening of pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Egeblad, M., Nakazone, E.S., and Werb, Z., Dev. Cell, 2010, vol. 18, pp. 884–901. https://doi.org/10.1016/j.devcel.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mulholland, T., McAllister, M., Patek, S., Flint, D., Underwood, M., Sim, A., Edwards, J., and Zagnoni, M., Sci. Rep., vol. 8, p. 14672. https://doi.org/10.1038/s41598-018-33055-0

  3. Lin, R.Z. and Chang, H.Y., Biotechnol. J., 2008, vol. 3, pp. 1172–1184. https://doi.org/10.1002/biot.200700228

    Article  CAS  PubMed  Google Scholar 

  4. Harrison, R.G., Greenman, M.J., Mall, P., and Jackson, C.M., Anat. Rec., 1992, vol. 1, pp. 116–128. https://doi.org/10.1002/ar.1092340113

    Article  Google Scholar 

  5. Breslin, S. and O’Driscoll, L., Drug Dis. Today, 2013, vol. 18, pp. 240–249. https://doi.org/10.1016/j.drudis.2012.10.003

    Article  CAS  Google Scholar 

  6. Desoize, B. and Jardillier, J., Crit. Rev. Oncol. Hematol., 2000, vol. 36, pp. 193–207.

    Article  CAS  PubMed  Google Scholar 

  7. Dardousis, K., Voolstra, C., Roengvoraphoj, M., Sekandarzad, A., Mesghenna, S., Winkler, J., Ko, Y., Hescheler, J., and Sachinidis, A., Mol. Ther., 2007, vol. 15, pp. 94–102. https://doi.org/10.1038/sj.mt.6300003

    Article  CAS  PubMed  Google Scholar 

  8. Ghosh, S., Joshi, M.B., Ivanov, D., Feder-Mengus, C., Spagnoli, G.C., Martin, I., Erne, P., and Resink, T.J., FEBS Lett., 2007, vol. 581, pp. 4523–4528. https://doi.org/10.1016/j.febslet.2007.08.038

    Article  CAS  PubMed  Google Scholar 

  9. Feder-Mengus, C., Ghosh, S., Weber, W.P., Wyler, S., Zajac, P., Terracciano, L., Oertli, D., Heberer, M., Martin, I., Spagnoli, G., and Reschner, A., Br. J. Cancer, 2007, vol. 96, pp. 1072–1082. https://doi.org/10.1038/sj.bjc.6603664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Durand, R.E., Cancer Chemother. Pharmacol., 1990, vol. 26, pp. 198–204. https://doi.org/10.1007/bf02897199

    Article  CAS  PubMed  Google Scholar 

  11. Bartholomӓ, P., Reininger-Mack, I.A., Zhang, Z., Thielecke, H., and Robitzki, A., J. Biomol. Screen., 2005, vol. 10, pp. 705–714. https://doi.org/10.1177/1087057105277841

    Article  Google Scholar 

  12. Friedrich, J., Seidel, C., Ebner, R., and Kunz-Schughart, L.A., Nat. Protoc., 2009, vol. 4, pp. 309–324. https://doi.org/10.1038/nprot.2008.226

    Article  CAS  PubMed  Google Scholar 

  13. Kunz-Schughart, L.A., Freyer, J.P., Hofstaedter, F., and Ebner, R., J. Biomol. Screen., 2004, vol. 9, pp. 273–285. https://doi.org/10.1177/1087057104265040

    Article  CAS  PubMed  Google Scholar 

  14. Dubessy, C., Merlin, J.M., Marchal, C., and Guillemin, F., Crit. Rev. Oncol. Hematol., 2000, vol. 36, pp. 179–192. https://doi.org/10.1016/s1040-8428(00)00085-8

    Article  CAS  PubMed  Google Scholar 

  15. Lin, R.Z., Chu, W.C., Chiang, C.C., Lai, C.H., and Chang, H.Y., Tissue Eng. Part. C Methods, 2008, vol. 14, pp. 197–205. https://doi.org/10.1089/ten.tec.2008.0061

    Article  CAS  PubMed  Google Scholar 

  16. Steer, D.L. and Nigam, S.K., Am. J. Physiol. Renal. Physiol., 2004, vol. 1, pp. 1–7.

    Article  Google Scholar 

  17. Ivascu, A. and Kubbies, M., J. Biomol. Screen., 2006, vol. 11, pp. 922–932. https://doi.org/10.1177/1087057106292763

    Article  CAS  PubMed  Google Scholar 

  18. Friedrich, J., Seidel, C., Ebner, R., and Kunz-Schughart, L.A., Nat. Protoc., 2009, vol. 4, pp. 309–324. https://doi.org/10.1038/nprot.2008.226

    Article  CAS  PubMed  Google Scholar 

  19. Klinder, A., Markhoff, J., Jonitz-Heincke, A., Sterna, P., Salamon, A., and Bader, R., Exp. Ther. Med., 2019, vol. 17, pp. 2004–2012. https://doi.org/10.3892/etm.2019.7204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keller, G.M., Curr. Opin. Cell Biol., 1995, vol. 7, pp. 862–869. https://doi.org/10.1016/0955-0674(95)80071-9

    Article  CAS  PubMed  Google Scholar 

  21. Kelm, J.M., Timmins, N.E., Brown, C.J., Fussenegger, M., and Nielsen, L.K., Biotechnol. Bioeng., 2003, vol. 83, pp. 173–180. https://doi.org/10.1002/bit.10655

    Article  CAS  PubMed  Google Scholar 

  22. Kurosawa, H., J. Biosci. Bioeng., 2007, vol. 3, pp. 389–398. https://doi.org/10.1263/jbb.103.389

    Article  CAS  Google Scholar 

  23. Timmins, N.E. and Nielsen, L.K., Methods Mol. Med., 2007, vol. 140, pp. 141–151. https://doi.org/10.1007/978-1-59745-443-8_8

    Article  CAS  PubMed  Google Scholar 

  24. Kim, J.B., Semin. Cancer Biol., 2005, vol. 5, pp. 365–377. https://doi.org/10.1016/j.semcancer.2005.05.002

    Article  Google Scholar 

  25. Barrila, J., Radtke, A.L., Crabbe, A., Sarker, S.F., Herbst-Kralovetz, M.M., Ott, C.M., and Nickerson, C.A., Nat. Rev. Microbiol., 2010, vol. 8, pp. 791–801. https://doi.org/10.1038/nrmicro2423

    Article  CAS  PubMed  Google Scholar 

  26. Lin, R.Z. and Chang, H.Y., Biotechnol. J., 2008, vol. 3, pp. 1172–1184.

    Article  CAS  PubMed  Google Scholar 

  27. Lü, W.D., Zhang, L., Wu, C.L., Liu, Z.G., Lei, G.Y., Liu, J., Gao, W., and Hu, Y.R., PLoS One, 2014, vol. 9, p. e103672. https://doi.org/10.1371/journal.pone.0103672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hughes, C.S., Postovit, L.M., and Lajoie, G.A., Proteomics, 2010, vol. 10, pp. 1886–1890. https://doi.org/10.1002/pmic.200900758

    Article  CAS  PubMed  Google Scholar 

  29. Porzionato, A., Stocco, E., Barbon, S., Grandi, F., Macchi, V., and De Caro, R., Int. J. Mol. Sci., 2018, vol. 19, p. 4117. https://doi.org/10.3390/ijms19124117

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nath, S. and Devi, G.R., Pharmacol. Ther., 2016, vol. 163, pp. 94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sodunke, T.R., Turner, K.K., Caldwell, S.A., McBride, K.W., Reginato, M.J., and Noh, H.M., Biomaterials, 2007, vol. 28, pp. 4006–4016.

    Article  CAS  PubMed  Google Scholar 

  32. Zaki, M.Y.W., Shetty, S., Wilkinson, A.L., Patten, D.A., Oakley, F., and Reeves, H., J. Vis. Ex., 2021, vol. 175, p. e62868. https://doi.org/10.3791/62868

    Article  CAS  Google Scholar 

  33. Sourla, A., Doillon, C., and Koutsilieris, M., Anticancer Res., 1996, vol. 16, pp. 2773–2780.

    CAS  PubMed  Google Scholar 

  34. Jiang, T., Munguia-Lopez, J.G., Flores-Torres, S., Grant, J., Vijayakumar, S., De Leon-Rodriguez, A., and Kinsella, M.J., Sci. Rep., vol. 7, p. 4575.

  35. Lisov, A., Vrublevskaya, V., Lisova, Z., Leontievsky, A., and Morenkov, O., Viruses, 2015, vol. 7, pp. 5343–5360. https://doi.org/10.3390/v7102878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Edmondson, R., Broglie, J.J., Adcock, A.F., and Yang, L., Assay Drug Dev. Technol., 2014, vol. 12, pp. 207–218. https://doi.org/10.1089/adt.2014.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, R.Z. and Chang, H.Y., Biotechnol. J., 2008, vol. 3, pp. 1172–1184. https://doi.org/10.1002/biot.200700228

    Article  CAS  PubMed  Google Scholar 

  38. Benien, P. and Swami, A., Future Oncol., 2014, vol. 10, pp. 1311–1327. https://doi.org/10.2217/fon.13.274

    Article  CAS  PubMed  Google Scholar 

  39. Archibald, M., Pritchard, T., Nehoff, H., Rosengren, R.J., Greish, K., and Taurin, S., Int. J. Nanomed., 2016, vol. 11, pp. 179–200. https://doi.org/10.2147/IJN.S97286

    Article  CAS  Google Scholar 

  40. Roberts, G.C., Morris, P.G., Moss, M.A., Maltby, S.L., Palmer, C.A., Nash, C.E., Smart, E., Holliday, D.L., and Speirs, V., PLoS One, 2016, vol. 11, p. e0157004. https://doi.org/10.1371/journal.pone.0157004

  41. Takir, G.G., Debelec-Butuner, B., and Korkmaz, K.S., Proceedings, 2018, vol. 2, p. 1555. https://doi.org/10.3390/proceedings2251555

    Article  Google Scholar 

  42. Kim, C.J., Terado, T., Tambe, Y., Mukaisho, K., Sugihara, H., Kawauchi, A., and Inoue, H., Int. J. Oncol., 2018, vol. 52, pp. 231–240. https://doi.org/10.3892/ijo.2017.4194

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, L., Xiu, J., Liu, Y., Zhang, T., Pan, W., Zheng, X., and Zhang, X., Sci. Rep., vol. 9, p. 19717. https://doi.org/10.1038/s41598-019-56241-0

  44. Froehlich, K., Haeger, J.D., Heger, J., Pastuschek, J., Photini, S.M., Yan, Y., Lupp, A., Pfarrer, C., Mrowka, R., Schleußner, E., Markert, U.R., and Schmidt, A., J. Mammary Gland Biol. Neoplasia, 2016, vol. 21, pp. 89–98. https://doi.org/10.1007/s10911-016-9359-2

    Article  PubMed  Google Scholar 

  45. Rodríguez, C.E., Reidel, S.I., Bal de Kier Joffé, E.D., Jasnis, M.A., and Fiszman, G.L, PLoS One, 2015, vol. 10, p. e0137920. https://doi.org/10.1371/journal.pone.0137920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Djordjevic, B. and Lange, C.S., Acta Oncol., 2006, vol. 45, pp. 412–420. https://doi.org/10.1080/02841860500520743

    Article  CAS  PubMed  Google Scholar 

  47. Kim, H., Phung, Y., and Ho, M., PLoS One, 2012, vol. 7, p. e39556. https://doi.org/10.1371/journal.pone.0039556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Betson, M., Lozano, E., Zhang, J., and Braga, V.M., J. Biol. Chem., 2002, vol. 277, pp. 36962–36969. https://doi.org/10.1074/jbc.m207358200

    Article  CAS  PubMed  Google Scholar 

  49. Troitskaya, O., Novak, D., Nushtaeva, A., Savinkova, M., Varlamov, M., Ermakov, M., Richter, V., and Koval, O., Int. J. Mol. Sci., 2021, vol. 22, p. 12937. https://doi.org/10.3390/ijms222312937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitajima, D., Kasamatsu, A., Nakashima, D., Miyamoto, I., Kimura, Y., Endo-Sakamoto, Y., Shiiba, M., Tanzawa, H., and Uzawa, K., Oncology Lett., 2018, vol. 15, pp. 7237–7242. https://doi.org/10.3892/ol.2018.8212

    Article  CAS  Google Scholar 

  51. Fukuhara, S., Sako, K., Noda, K., Nagao, K., Miura, K., and Mochizuki, N., Exp. Mol. Med., 2009, vol. 41, pp. 133–139. https://doi.org/10.3858/emm.2009.41.3.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weinberg, F., Han, M.K.L., Dahmke, I.N., Del Campo, A., and de Jonge, N., PLoS One, 2020, vol. 15, p. e0234430. https://doi.org/10.1371/journal.pone.0234430

  53. Singh, A., Winterbottom, E., and Daar, I.O., Front. Biosci., 2012, vol. 17, pp. 473–497. https://doi.org/10.2741/3939

    Article  CAS  Google Scholar 

  54. Godoy-Parejo, C., Deng, C., Liu, W., and Chen, G., Stem. Cells, 2019, vol. 37, pp. 1030–1041. https://doi.org/10.1002/stem.3026

    Article  CAS  PubMed  Google Scholar 

  55. Cockburn, J.G., Richardson, D.S., Gujral, T.S., and Mulligan, L.M., J. Clin. Endocrinol. Metab., 2010, vol. 95, pp. 342–346. https://doi.org/10.1210/jc.2010-0771

    Article  Google Scholar 

  56. Henry, C., Hacker, N., and Ford, C., Oncotarget, 2017, vol. 8, pp. 112727–112738. https://doi.org/10.18632/oncotarget.22559

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shin, W.S., Park, M.K., Lee, Y.H., Kim, K.W., Lee, H., and Lee, S.T., Cancer Sci., 2020, vol. 111, pp. 3292–3302. https://doi.org/10.1111/cas.14568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chiasson-MacKenzie, C. and McClatchey, A.I., Cold Spring. Harb. Perspect. Biol., 2018, vol. 10, p. a029215. https://doi.org/10.1101/cshperspect.a029215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, Y.B., Nikoulina, S.E., Ciaraldi, T.P., Henry, R.R., and Kahn, B.B., J. Clin. Invest., 1999, vol. 104, pp. 733–741. https://doi.org/10.1172/JCI6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mackenzie, R. and Elliott, B., Diabetes Metab. Syndr. Obes., 2014, vol. 7, pp. 55–64. https://doi.org/10.2147/DMSO.S48260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, G., Ji, X.D., Gao, H., Zhao, J.S., Xu, J.F., Sun, Z.J., Deng, Y.Z., Shi, S., Feng, Y.X., Zhu, Y.Q., Wang, T., Li, J.J., and Xie, D., Nat. Commun., 2012, vol. 3, p. 667. https://doi.org/10.1038/ncomms1675

    Article  CAS  PubMed  Google Scholar 

  62. Akasov, R., Gileva, A., Zaytseva-Zotova, D., Burov, S., Chevalot, I., Guedon, E., and Markvicheva, E., Biotechnol. Lett., 2017, vol. 39, pp. 45–53.

    Article  CAS  PubMed  Google Scholar 

  63. Buckley, C.D., Pilling, D., Henriquez, N.V., Parsonage, G., Threlfall, K., Scheel-Toellner, D., Simmons, D.L., Akbar, A.N., Lord, J.M., and Salmon, M., Nature, 1999, vol. 397, pp. 534–539. https://doi.org/10.1038/17409

    Article  CAS  PubMed  Google Scholar 

  64. Kang, I.C., Kim, D.S., Jang, Y., and Chung, K.H., Biochem. Bioph. Res. Comm., 2000, vol. 275, pp. 169–173. https://doi.org/10.1006/bbrc.2000.3130

    Article  CAS  Google Scholar 

  65. Ritchie, C.K., Giordano, A., and Khalili, K., J. Cell Physiol, 2000, vol. 184, pp. 214–221. https://doi.org/10.1002/1097-4652(200008)184:2%3C214::aid-jcp9%3E3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  66. Anuradh, C., Kanno, S., and Hirano, S., Cell Biol. Toxicol., 2000, vol. 16, pp. 275–283. https://doi.org/10.1023/a:1026758429238

    Article  Google Scholar 

  67. Rystsov, G.K., Lisov, A.V., and Zemskova M.Yu., Patent RU 2742689 C1, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. K. Rystsov or M. Yu. Zemskova.

Ethics declarations

The authors declare no conflicts of interest.

The article does not contain a description of studies performed with the participation of people or animals as objects.

Additional information

Translated by N. Onishchenko

Abbreviations: RTK, receptor tyrosine kinases; MMSC, multipotent mesenchymal stromal cells; poly-2,5-DHBA, polymers of 2,5-dihydroxybenzoic acid.

Corresponding author; phone: +7 (999) 963-15-47; +7 (929) 913-27-56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rystsov, G.K., Lisov, A.V. & Zemskova, M.Y. Polymers of 2,5-Dihydroxybenzoic Acid Induce Formation of Spheroids in Mammalian Cells. Russ J Bioorg Chem 48 (Suppl 1), S38–S49 (2022). https://doi.org/10.1134/S106816202206019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202206019X

Keywords:

Navigation