Skip to main content

Pyrazine Derivatives—Versatile Scaffold

Abstract

Pyrazines are important class of pharmacophores because of their versatility in pharmacological activity. Pyrazines are among the most widely known heterocyclic compounds those can be isolated from natural sources or produced synthetically. Many substituted pyrazines are produced naturally and are widely distributed in plants, animals, including marine organisms. These heterocyclic analogs have been proven important scaffold in perfumeries, food industries and pharmaceuticals. Due to diverse biological activities of pyrazine-based drugs, a rise in investigations of pyrazine containing candidates has been observed. In recent past numerous advancement has been taken place to explore their synthetic pathways and biological activities. This review focuses on biosynthesis of different pyrazine derivatives and their various biological activities.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

REFERENCES

  1. Riccardi, G., Pasca, M.R., and Buroni, S., Future Microbiol., 2009, vol. 5, pp. 597–614. https://doi.org/10.2217/fmb.09.20

    Article  Google Scholar 

  2. Bergmann, K.E., Cynamon, M.H., and Welch, J.T., J. Med. Chem., 1996, vol. 39 (17), pp. 3394–3400. https://doi.org/10.1021/jm950538t

    CAS  Article  PubMed  Google Scholar 

  3. El-Emary, T.I., Kamal El-Dean, A.M., and El-Kashef, H.S., Il Farmaco, 1998, vol. 53 (06), pp. 383–388. https://doi.org/10.1016/S0014-827X(98)00014-7

    CAS  Article  Google Scholar 

  4. Prendergast, B.D., Clin. Pharm., 1984, vol. 5 (3), pp. 473–485.

    Google Scholar 

  5. Haddy, F.J., Pamnani, M.B., Swindall, B.T., Johnston, J., and Cragoe, E.J., Hypertension, 1985, vol. 7 (3), pp. 121–126. https://doi.org/10.1161/01.hyp.7.3_pt_2.i121

    CAS  Article  Google Scholar 

  6. Abd ul-Malik, M.A., Zaki, R.M., Kamal El-Dean, A.M., and Radwan, S.M., J. Heterocycl. Chem., 2018, vol. 55 (8), pp. 1828–1853. https://doi.org/10.1002/jhet.3225

  7. Rusinov, V.L., Egorov, I.N., Chupakhin O.N., Belanov, E.F., Bormotov, N.I., and Serova O.A., Pharm. Chem. J., 2012, vol. 45 (11), pp. 655–659. https://doi.org/10.1007/s11094-012-0698-z

    CAS  Article  Google Scholar 

  8. Abdel-Mohsen, S.A., El-Emary, T.I., and El-Kashef, H.S., Chem. Pharm. Bull., 2016, vol. 64 (5), pp. 476–482. https://doi.org/10.1248/cpb.c16-00044

    CAS  Article  Google Scholar 

  9. Müller, R. and Rappert, S., Appl. Microbiol. Biotechnol., 2010, vol. 85 (5), pp. 1315–1320. https://doi.org/10.1007/s00253-009-2362-4

    CAS  Article  PubMed  Google Scholar 

  10. Edwards, C.A. and Thompson, A.R., Residue Rev., 1973, vol. 45 (513), pp. 1–79. https://doi.org/10.1007/978-1-4615-8493-3_1

    CAS  Article  PubMed  Google Scholar 

  11. Helzlsouer, K.J. and Kensler, T.W., Prevent. Med., 1993, vol. 22, pp. 783–795. https://doi.org/10.1006/pmed.1993.1072

    CAS  Article  Google Scholar 

  12. Rajini, K.S., Aparna, P., Sasikala, C., and Ramana, C.V., Crit. Rev. Microbiol., 2011, vol. 37 (2), pp. 99–112. https://doi.org/10.3109/1040841X.2010.512267

    CAS  Article  PubMed  Google Scholar 

  13. Abu Khaled, M., Morin, D.R., Benington, F., and Patrick Daugherty, J., Cancer Chemother. Pharmacol., 1984, vol. 13, pp. 73–74. https://doi.org/10.1007/BF00257116

    Article  Google Scholar 

  14. Higashio, Y. and Shoji, T. Erratum., Appl. Catal. A Gen., 2004, vol. 260 (2), pp. 251–259. https://doi.org/10.1016/S0926-860X(03)00197-2

    CAS  Article  Google Scholar 

  15. Baker, G.L., Cornell, J.A., Gorbet, D.W., O’Keefe, S.F., Sims, C.A., and Talcott, S.T., J. Food Sci., 2003, vol. 68 (1), pp. 394–400. https://doi.org/10.1111/j.1365-2621.2003.tb14171.x

    CAS  Article  Google Scholar 

  16. Marais, J., Hunter J.J., and Haasbroek P.D., South African J. Enol. Vitic., 1999, vol. 20 (1), pp. 19–33. https://doi.org/10.21548/20-1-2223

    CAS  Article  Google Scholar 

  17. Takematsu, T., Hirozo, S., Takamaro, M., Toshiei, A., Michio, C., Akira, N., U.S. Patent No. 460403 (November 4, 1984).

  18. Ritter, A.M., Shaw, J.L., Williams, W.M., and Travis, K.Z., Environ. Toxicol. Chem., 2000, vol. 19 (3), pp. 749–759. https://doi.org/10.1002/etc.5620190330

    CAS  Article  Google Scholar 

  19. Üngören, Ş.H., Dilekoǧlu, E., and Koca, I., Chinese Chem. Lett., 2013, vol. 24 (12), pp. 1130–1133. https://doi.org/10.1016/j.cclet.2013.08.001

    CAS  Article  Google Scholar 

  20. Showalter, D.N., Troyer, E.J., Aklu, M., Jang, E.B., and Siderhurst, M.S., Insectes Soc., 2010, vol. 57 (2), pp. 223–232. https://doi.org/10.1007/s00040-010-0075-4

    Article  Google Scholar 

  21. Moore, B.P., Brown, W.V., and Rothschild, Chemoecology, 1990, vol. 1, pp. 43–51.

    CAS  Article  Google Scholar 

  22. Cheng, T.B., Reineccius, G.A., Bjorklund, J.A., and Leete, E., J. Agric. Food Chem., 1991, vol. 39 (5), pp. 1009–1012. https://doi.org/10.1021/jf00005a042

    CAS  Article  Google Scholar 

  23. Dickschat, J.S., Wickel, S., Bolten, C.J., Nawrath, T., Schulz, S., and Wittmann, C., Eur. J. Org. Chem., 2010, vol. 14, pp. 2687–2695. https://doi.org/10.1002/ejoc.201000155

    CAS  Article  Google Scholar 

  24. Yu, X., Liu, F., Zou, Y., Tang, M.C., Hang, L., Houk, K.N., and Tang, Y., J. Am. Chem. Soc., 2016, vol. 138 (41), pp. 13529–13532. https://doi.org/10.1021/jacs.6b09464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, C., Xu, Y., Xu, K., Tan, G., and Yu, X., Tetrahedron Lett., 2018, vol. 59 (32), pp. 3084–3087. https://doi.org/10.1016/j.tetlet.2018.06.065

    CAS  Article  Google Scholar 

  26. Badrinarayanan, S. and Sperry, J., J. Org. Biomol. Chem., 2012, vol. 10 (10), pp. 2126–2132. https://doi.org/10.1039/c2ob06935k

    CAS  Article  Google Scholar 

  27. Shimomura, O., Johnson, F.H., and Saiga, Y., J. Cell Comp. Physiol., 1962, vol. 59, pp. 223–239. https://doi.org/10.1002/jcp.1030590302

    CAS  Article  PubMed  Google Scholar 

  28. Shimomura, O., Johnson, F.H., and Morise, H., Biochemistry, 1974, vol. 13, pp. 3278–3286. https://doi.org/10.1021/bi00713a016

    CAS  Article  PubMed  Google Scholar 

  29. Dodeigne, C., Thunus, L., and Lejeune, R., Talanta, 2000, vol. 51, pp. 415–439. https://doi.org/10.1016/S0039-9140(99)00294-5

    CAS  Article  PubMed  Google Scholar 

  30. Inoue, S., Taguchi, H., Murata, M., Kakoi, H., and Goto, T., Chem. Lett., 1977, vol. 6, pp. 259–262. https://doi.org/10.1246/cl.1977.259

    Article  Google Scholar 

  31. Shimomura, O. and Johnson, F.H., Proc. Natl. Acad. Sci. U.S.A., 1978, vol. 75 (6), pp. 2611–2615. https://doi.org/10.1073/pnas.75.6.2611

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Shimomura, O., Inoue, S., and Goto, T., Chem. Lett., 1975, vol. 4 (3), pp. 247–248. https://doi.org/10.1246/cl.1975.247

    Article  Google Scholar 

  33. Hori, K. and Cormier, M.J., Proc. Natl. Acad. Sci. U.S.A., 1973, vol. 70 (1), pp. 120–123. https://doi.org/10.1073/pnas.70.1.120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Hori, K., Wampler, J.E., and Cormier, M.J., J. Chem. Soc. Chem. Commun., 1973, vol. 14, pp. 492–493. https://doi.org/10.1039/C39730000492

    Article  Google Scholar 

  35. Dubuisson, M.L.N., Rees, J.F., and Marchand-Brynaert, J., Drug Dev. Ind. Pharm., 2005, vol. 31 (9), pp. 827–849. https://doi.org/10.1080/03639040500271803

    CAS  Article  PubMed  Google Scholar 

  36. Wang, J., Xu, M., Chen, M., Jiang, Z., and Chen, G., Ultrason. Sonochem., 2012, vol. 19 (2), pp. 237–242. https://doi.org/10.1016/j.ultsonch.2011.06.021

    CAS  Article  PubMed  Google Scholar 

  37. Diaz, J.M., Plummer, S., Tomas, C., and Alves-De-Souza, C., J. Plankton Res., 2018, vol. 40 (6), pp. 667–677. https://doi.org/10.1093/plankt/fby043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Jancinová, V., Nosal, R., Payer, J., and Killinger, Z., Interdiscip. Toxicol., 2017, vol. 10, pp. 52–55. https://doi.org/10.1515/intox-2017-0008

    CAS  Article  PubMed  Google Scholar 

  39. Inoue, S., Kakoi, H., and Goto, T., J. Chem. Soc. Chem. Commun., 1976, vol. 24, pp. 1056–1057. https://doi.org/10.1039/C39760001056

    Article  Google Scholar 

  40. Shimomura, O., Masugi, T., Johnson, F.H., and Haneda, Y., Biochemistry, 1978, vol. 17 (6), pp. 994–998. https://doi.org/10.1021/bi00599a008

    CAS  Article  PubMed  Google Scholar 

  41. Eremeeva, E.V., Markova, S.V., Westphal, A.H., Visser, A.J.W.G., van Berkel, W.J.H., and Vysotski, E.S., FEBS Lett., 2009, vol. 583 (12), pp. 1939–1944. https://doi.org/10.1016/j.febslet.2009.04.043

    CAS  Article  PubMed  Google Scholar 

  42. Tsuji, F.I., Biochim. Biophys. Acta Biomembr., 2002, vol. 1564 (1), pp. 189–197. https://doi.org/10.1016/S0005-2736(02)00447-9

    CAS  Article  Google Scholar 

  43. Takahashi, H. and Isobe, M., Bioorg. Med. Chem. Lett., 1993, vol. 3 (12), pp. 2647–2652. https://doi.org/10.1016/S0960-894X(01)80734-4

    CAS  Article  Google Scholar 

  44. Isobe, M., Kuse, M., Yasuda, Y., and Takahashi, H., Bioorg. Med. Chem. Lett., 1998, vol. 8 (20), pp. 2919–2924. https://doi.org/10.1016/S0960-894X(98)00525-3

    CAS  Article  PubMed  Google Scholar 

  45. Oba, Y., Kato, Shin-ichi, Ojika, M., and Inouye, S., Biochem. Biophys. Res. Commun., 2009, vol. 390 (3), pp. 684–688. https://doi.org/10.1016/j.bbrc.2009.10.028

    CAS  Article  PubMed  Google Scholar 

  46. Kato, S., Oba, Y., Ojika, M., and Inouye, S., Heterocycles, 2007, vol. 72, pp. 673–676. https://doi.org/10.3987/com-06-s(k)27

    CAS  Article  Google Scholar 

  47. Kato, S., Oba, Y., Ojika, M., Inouye, S., Tetrahedron, 2004, vol. 60 (50), pp. 11427–11434. https://doi.org/10.1016/j.tet.2004.09.080

    CAS  Article  Google Scholar 

  48. Oba, Y., Kato, S., Ojika, M., and Inouye, S., Tetrahedron Lett., 2002, vol. 43 (13), pp. 2389–2392. https://doi.org/10.1016/S0040-4039(02)00257-5

    CAS  Article  Google Scholar 

  49. Kato, S. I., Oba, Y., Ojika, M., and Inouye, S., Biosci. Biotechnol. Biochem., 2006, vol. 70 (6), pp. 1528–1532. https://doi.org/10.1271/bbb.60066

    CAS  Article  PubMed  Google Scholar 

  50. Dubuisson, M., Rees, J., and Marchand-Brynaert, J., Mini-Rev. Med. Chem., 2004, vol. 4 (4), pp. 421–435. https://doi.org/10.2174/1389557043403927

    CAS  Article  Google Scholar 

  51. Wang, Y., Yu, Y., Shabahang, S., Wang, G., and Szalay, A., Mol. Genet. Genomics, 2002, vol. 268, pp. 160–168. https://doi.org/10.1007/s00438-002-0751-9

    CAS  Article  PubMed  Google Scholar 

  52. Bronsart, L.L., Stokes, C., and Contag, C.H., Mol. Imaging Biol., 2016, vol. 18 (2), pp. 166–171. https://doi.org/10.1007/s11307-015-0896-7

    CAS  Article  PubMed  Google Scholar 

  53. Nguyen, H.T.H., Bouteau, F., Mazars, C., Kuse M., and Kawano, T., Plant Signal. Behav., 2018, vol. 13 (8), pp. 1–7. https://doi.org/10.1080/15592324.2018.1494467

    CAS  Article  Google Scholar 

  54. Kelton, J.G. and Blajchman, M.A., Canadian Med. Association J., 1980, vol. 122 (2), pp. 175–179.

    CAS  Google Scholar 

  55. Asaki, T., Hamamoto, T., Sugiyama, Y., Kuwano, K., and Kuwabara, K., Bioorg. Med. Chem., 2007, vol. 15 (21), pp. 6692–6704. https://doi.org/10.1016/j.bmc.2007.08.010

    CAS  Article  PubMed  Google Scholar 

  56. Tantawy, E.S., Amer, A.M., Mohamed, E.K., Abd Alla, M.M., and Nafie, M.S., J. Mol. Struct., 2020, pp. 1210. https://doi.org/10.1016/j.molstruc.2020.128013

  57. Cavalier, J.F., Burton, M., Dussart, F., Marchand, C., Rees, J.F., and Marchand-Brynaert, J., Bioorg. Med. Chem., 2001, vol. 9 (4), pp. 1037–1044. https://doi.org/10.1016/S0968-0896(00)00321-7

    CAS  Article  PubMed  Google Scholar 

  58. Holmes, A., Heilig, M., Rupniak, N.M.J., Steckler, T., and Griebel, G., Trends Pharmacol. Sci., 2003, vol. 24 (11), pp. 580–588. https://doi.org/10.1016/j.tips.2003.09.011

    CAS  Article  PubMed  Google Scholar 

  59. Croiset, G., Nijsen, M.J.M.A., and Kamphuis, P.J.G.H., Eur. J. Pharmacol., 2000, vol. 405 (1–3), pp. 225–234. https://doi.org/10.1016/S0014-2999(00)00556-2

    CAS  Article  PubMed  Google Scholar 

  60. Koob, G.F. and Heinrichs, S.C., Brain Res., 1999, vol. 848 (1–2), pp. 141–152. https://doi.org/10.1016/S0006-8993(99)01991-5

    CAS  Article  PubMed  Google Scholar 

  61. Liu, J., Yu, B., Neugebauer, V., Grigoriadis, D.E., Rivier, J., Vale, W.W., Shinnick-Gallagher, P., and Gallagher, J.P., J. Neurosci., 2004, vol. 24, pp. 4020–4029. https://doi.org/10.1523/JNEUROSCI.5531-03.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Makino, S., Hashimoto, K., and Gold, P. W., Pharmacol. Biochem. Behav., 2002, vol. 73 (1), pp. 147–158. https://doi.org/10.1016/S0091-3057(02)00791-8

    CAS  Article  PubMed  Google Scholar 

  63. Corbett, J.W., Rauckhorst, M.R., Qian, F., Hoffman, R.L., Knauer, C.S., and Fitzgerald, L.W., Bioorg. Med. Chem. Lett., 2007, vol. 17 (22), pp. 6250–6256. https://doi.org/10.1016/j.bmcl.2007.09.008

    CAS  Article  PubMed  Google Scholar 

  64. Williams, J.E., Avian Dis., 1970, vol. 14 (2), pp. 386–392. https://doi.org/10.2307/1588482

    CAS  Article  PubMed  Google Scholar 

  65. Lach, V.H., J. Appl. Bacteriol., 1990, vol. 68 (5), pp. 471–477. https://doi.org/10.1111/j.1365-2672.1990.tb02898.x

    CAS  Article  PubMed  Google Scholar 

  66. Kusstatscher, P., Cernava, T., Liebminger, S., and Berg, G., Sci. Rep., 2017, vol. 7 (1), pp. 1–8. https://doi.org/10.1038/s41598-017-13579-7

    CAS  Article  Google Scholar 

  67. Janssens, T.K.S., Tyc, O., Besselink, H., de Boer, W., and Garbeva, P., FEMS Microbiol. Lett., 2019, vol. 366 (3), pp. 1–10. https://doi.org/10.1093/femsle/fnz023

    CAS  Article  Google Scholar 

  68. Schöck, M., Liebminger, S., Berg, G., and Cernava, T., AMB Express, 2018, vol. 8 (54), pp. 1–7. https://doi.org/10.1186/s13568-018-0583-6

    CAS  Article  Google Scholar 

  69. Davis, L.E., Shalin, S.C., and Tackett, A., J. Cancer Biol. Ther., 2019, vol. 20 (11), pp. 1366–1379. https://doi.org/10.1080/15384047.2019.1640032

    CAS  Article  Google Scholar 

  70. Garamvölgyi, R., Dobos, J., Sipos, A., Boros, S., Illyés, E., Baska, F., Kékesi, L., Szabadkai, I., Szántai-Kis, C., Kéri, G., and Örfi, L., Eur. J. Med. Chem., 2016, vol. 108, pp. 623–643. https://doi.org/10.1016/j.ejmech.2015.12.001

    CAS  Article  PubMed  Google Scholar 

  71. Singh, I., Luxami, V., and Paul, K., Sci. Rep., 2020, vol. 10 (1), pp. 1–14. https://doi.org/10.1038/s41598-020-63605-4

    CAS  Article  Google Scholar 

  72. Broglie, P., Matsumoto, K., Akira, S., Brautigan, D.L., and Ninomiya-Tsuji, J., J. Biol. Chem., 2010, vol. 285 (4), pp. 2333–2339. https://doi.org/10.1074/jbc.M109.090522

    CAS  Article  PubMed  Google Scholar 

  73. Kang, S.J., Lee, J.W., Chung, S.H., Jang S. Y., Choi, J., Suh, K.H., Kim, Y.H., Ham, Y.J., and Min K.H., Eur. J. Med. Chem., 2019, vol. 163, pp. 660–670. https://doi.org/10.1016/j.ejmech.2018.12.025

    CAS  Article  PubMed  Google Scholar 

  74. Brown, M.T. and Cooper, J., Biochim. Biophys. Acta, 1996, vol. 1287, pp. 121–149. https://doi.org/10.1016/0304-419X(96)00003-0

    Article  PubMed  Google Scholar 

  75. Anguita, E. and Villalobo, A., Biochim. Biophys. Acta Mol. Cell Res., 2017, vol. 1864 (6), pp. 915–932. https://doi.org/10.1016/j.bbamcr.2016.10.022

    CAS  Article  PubMed  Google Scholar 

  76. Mukaiyama, H., Nishimura, T., Kobayashi, S., Ozawa, T., Kamada, N., Komatsu, Y., Kikuchi, S., Oonota, H., and Kusama, H., Bioorg. Med. Chem., 2007, vol. 15 (2), pp. 868–885. https://doi.org/10.1016/j.bmc.2006.10.041

    CAS  Article  PubMed  Google Scholar 

  77. Vitse, O., Laurent, F., Pocock, T.M., Bénézech, V., Zanik, L., Elliott, K.R.F., Subra, G., Portet, K., Bompart, J., Chapat, J.P., Small, R.C., Michel, A., and Bonnet, P.A., Bioorg. Med. Chem., 1999, vol. 7 (6), pp. 1059–1065. https://doi.org/10.1016/S0968-0896(99)00019-X

    CAS  Article  PubMed  Google Scholar 

  78. Rimoli, M.G., Avallone, L., de Caprariis, P., Luraschi, E., Abignente, E., Filippelli, W., Berrino, L., and Rossi, F., Eur. J. Med. Chem., 1997, vol. 32 (3), pp. 195–203. https://doi.org/10.1016/S0223-5234(97)83971-2

    CAS  Article  Google Scholar 

  79. Jenh, C.H., Cox, M.A., Cui, L., Reich, E.P., Sullivan, L., Chen, S.C., Kinsley, D., Qian, S., Kim, S.H., Rosenblum, S., Kozlowski, J., Fine, J.S., Zavodny, P.J., and Lundell, D., BMC Immunol., 2012, vol. 13 (2), pp. 1–14. https://doi.org/10.1186/10.1186/1471-2172-13-2

    Article  Google Scholar 

  80. Du, X., Gustin, D. J., Chen, X., Duquette, J., McGee, L.R., Wang, Z., Ebsworth, K., Henne, K., Lemon, B., Ma, J., Miao, S., Sabalan, E., Sullivan, T.J., Tonn, G., Collins, T.L., and Medina, J.C., Bioorg. Med. Chem. Lett., 2009, vol. 19 (17), pp. 5200–5204. https://doi.org/10.1016/j.bmcl.2009.07.021

    CAS  Article  PubMed  Google Scholar 

  81. Macleod, A., Mitchell, D.R., Palmer, N.J., Parsy, C.C., Goldsmith, M.D., Harris, C.J. 2009, WO 2009/024585 A2.

  82. de Clercq, E., Chem. Biodivers., 2004, vol. 1 (1), pp. 44–64. https://doi.org/10.1002/cbdv.200490012

    CAS  Article  PubMed  Google Scholar 

  83. Huang, B., Liang, X., Li, C., Chen, W., Liu, T., Li, X., Sun, Y., Fu, L., Liu, H., De Clercq, E., Pannecouque, C., Zhan, P., and Liu, X.F., Eur. J. Med. Chem., 2015, vol. 93, pp. 330–337. https://doi.org/10.1016/j.ejmech.2015.02.022

    CAS  Article  PubMed  Google Scholar 

  84. Boggavarapu, J. and Nannapaneni, M., Asian J. Chem., 2020, vol. 32 (1), pp. 84–90. https://doi.org/10.14233/ajchem.2020.22365

    CAS  Article  Google Scholar 

  85. Dave, D.M., Pansuriya, D., Bapodra, A.H., and Ladva, K.D., J. Chem. Pharm. Res., 2016, vol. 8 (8), pp. 514–517.

    CAS  Google Scholar 

  86. Roymahapatra, G.M., Mandal, S.F., Porto, W., Samanta, T., Giri, S., Dinda, J.L., Franco, O.K., and Chattaraj, P., Curr. Med. Chem., 2012, vol. 19 (24), pp. 4184–4193. https://doi.org/10.2174/092986712802430090

    CAS  Article  PubMed  Google Scholar 

  87. Myadaraboina, S., Alla, M, Parlapalli, A., and Manda S., Int. J. Chem. Sci., 2018, vol. 16 (3), pp. 1–12. https://doi.org/10.21767/0972-768x.1000276

    CAS  Article  Google Scholar 

  88. Devillers, I., Dive, G., De Tollenaere, C., Falmagne, B., De Wergifosse, B., Rees, J.F., and Marchand-Brynaert, J., Bioorg. Med. Chem. Lett., 2001, vol. 11 (17), pp. 2305–2309. https://doi.org/10.1016/S0960-894X(01)00445-0

    CAS  Article  PubMed  Google Scholar 

  89. Currie, K.S., Kropf, J.E., Lee, T., Blomgren, P., Xu, J., Zhao, Z., Gallion, S., Whitney, J.A., Maclin, D., Lansdon, E.B., Maciejewski, P., Rossi, A.M., Rong, H., Macaluso, J., Barbosa, J., Di Paolo, J.A., and Mitchell, S.A., J. Med. Chem., 2014, vol. 57 (9), pp. 3856–3873. https://doi.org/10.1021/jm500228a

    CAS  Article  PubMed  Google Scholar 

  90. Lin, J.J., Zhu, V.W., Yoda, S., Yeap, B.Y., Schrock, A.B., Dagogo-Jack, I., Jessop, N.A., Jiang, G.Y., Le, L.P., Gowen, K., Stephens, P.J., Ross, J.S., Ali, S.M., Miller, V.A., Johnson, M.L., Lovly, C.M., Hata, A.N., Gainor, J.F., Iafrate, A.J., Shaw, A.T., and Ignatius Ou, S.H., J. Clin. Oncol., 2018, vol. 36 (12), pp. 1199–1206. https://doi.org/10.1200/JCO.2017.76.2294

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Iikubo, K., Kurosawa, K., Matsuya, T., Kondoh, Y., Kamikawa, A., Moritomo, A., Iwai, Y., Tomiyama, H., and Shimada, I., Bioorg. Med. Chem., 2019, vol. 27 (8), pp. 1683–1692. https://doi.org/10.1016/j.bmc.2019.03.018

    CAS  Article  PubMed  Google Scholar 

  92. Lewerenz, J. and Maher, P., Front. Neurosci., 2015, vol. 9 pp. 1–20 https://doi.org/10.3389/fnins.2015.00469

    Article  Google Scholar 

  93. Owen, D.R., Dodd, P.G., Gayton, S., Greener, B.S., Harbottle, G.W., Mantell, S.J., Maw, G.N., Osborne, S.A., Rees, H., Ringer, T.J., Rodriguez-Lens, M., and Smith, G.F., Bioorg. Med. Chem. Lett., 2007, vol. 17 (2), pp. 486–490. https://doi.org/10.1016/j.bmcl.2006.10.015

    CAS  Article  PubMed  Google Scholar 

  94. Bouz, G., Semelková, L., Jand’ourek, O., Konečná, K., Paterová, P., Navrátilová, L., Kubíček, V., Kuneš, J., Doležal, M., and Zitko, J., Molecules, 2019, vol. 24 (7), article no. 1212. https://doi.org/10.3390/molecules24071212

    CAS  Article  PubMed Central  Google Scholar 

  95. Servusova-Vanaskova, B., Paterova, P., Garaj, V., Mandikova, J., Kunes, J., Naesens, L., Jílek, P., Dolezal, M., and Zitko, J., J. Chem. Biol. Drug Des., 2015, vol. 86 (4), pp. 674–681. https://doi.org/10.1111/cbdd.12536

    CAS  Article  Google Scholar 

  96. Jandourek, O., Tauchman, M., Paterova, P., Konecna, K., Navratilova, L., Kubicek, V., Holas, O., Zitko, J., and Dolezal, M., Molecules, 2017, vol. 22 (223), article no. 223. https://doi.org/10.3390/molecules22020223

    CAS  Article  PubMed Central  Google Scholar 

  97. Zitko, J., Servusová, B., Janoutová, A., Paterová, P., Mandíková, J., Garaj, V., Vejsová, M., Marek, J., and Doležal, M., Bioorg. Med. Chem., 2015, vol. 23 (1), pp. 174–183. https://doi.org/10.1016/j.bmc.2014.11.014

    CAS  Article  PubMed  Google Scholar 

  98. Servusová, B., Paterová, P., Mandíková, J., Kubíček, V., Kučera, R., Kuneš, J., Doležal, M., and Zitko, J., Bioorg. Med. Chem. Lett., 2014, vol. 24 (2), pp. 450–453. https://doi.org/10.1016/j.bmcl.2013.12.054

    CAS  Article  PubMed  Google Scholar 

  99. Zitko, J., Dolezal, M., Svobodova, M., Vejsova, M., Kunes, J., Kucera, R., and Jilek, P., Bioorg. Med. Chem., 2011, vol. 19 (4), pp. 1471–1476. https://doi.org/10.1016/j.bmc.2010.12.054

    CAS  Article  PubMed  Google Scholar 

  100. Krátký, M., Vinšová, J., and Buchta, V., Sci. World J., 2012, vol. 2012, pp. 732–741. https://doi.org/10.1100/2012/290628

    CAS  Article  Google Scholar 

  101. Panda, S.S., Detistov, O.S., Girgis, A.S., Mohapatra, P.P., Samir, A., and Katritzky, A.R., Bioorg. Med. Chem. Lett., 2016, vol. 26 (9), pp. 2198–2205. https://doi.org/10.1016/j.bmcl.2016.03.062

    CAS  Article  PubMed  Google Scholar 

  102. Sebastian, S.H.R., Al-Alshaikh, M.A., El-Emam, A.A., Panicker, C.Y., Zitko, J., Dolezal, M., and VanAlsenoy, C., J. Mol. Struct., 2016, vol. 1119, pp. 188–199. https://doi.org/10.1016/j.molstruc.2016.04.088

    CAS  Article  Google Scholar 

  103. Semelková, L., Janošcová, P., Fernandes, C., Bouz, G., Jand’Ourek, O., Konečná, K., Paterová, P., Navrátilová, L., Kuneš, J., Doležal, M., and Zitko, J., Molecules, 2017, vol. 22, article no. 1491. https://doi.org/10.3390/molecules22091491

    CAS  Article  PubMed Central  Google Scholar 

  104. Hareesh, H.N., Nagananda, G.S., Minchitha, K.U., Swetha, S., Ganai, S.A., Dhananjaya, B.L., Nagaraju, N., and Kathyayini, N., Res. J. Pharm. Biol. Chem. Sci., 2015, vol. 6 (4), pp. 1914–1926.

    CAS  Google Scholar 

  105. Dolezal, M., Jampílek, J., Osicka, Z., Kuneš, J., Buchta, V., and Víchová, P., Il Farmaco, 2003, vol. 58 (11), pp. 1105–1111. https://doi.org/10.1016/S0014-827X(03)00163-0

    CAS  Article  PubMed  Google Scholar 

  106. Krinková, J., Doležal, M., Hartl, J., Buchta, V., and Pour, M., Il Farmaco, 2002, vol. 57 (1), pp. 71–78. https://doi.org/10.1016/S0014-827X(01)01156-9

    Article  PubMed  Google Scholar 

  107. Świderski, G., Wojtulewski, S., Kalinowska, M., Świsłocka, R., Wilczewska, A. Z., Pietryczuk, A., Cudowski, A., and Lewandowski, W., Polyhedron, 2020, vol. 175, p. 114173. https://doi.org/10.1016/j.poly.2019.114173

    CAS  Article  Google Scholar 

  108. Jampilek, J., Dolezal, M., and Buchta, V., Med. Chem., 2007, vol. 3 (3), pp. 277–280. https://doi.org/10.2174/157340607780620635

    CAS  Article  PubMed  Google Scholar 

  109. Seitz, L.E., Suling, W.J., and Reynolds, R.C., J. Med. Chem., 2002, vol. 45, pp. 5604–5606. https://doi.org/10.1021/jm020310n

    CAS  Article  PubMed  Google Scholar 

  110. Premkumar, T. and Govindarajan, S., World J. Microbiol. Biotechnol., 2005, vol. 21 (4), pp. 479–480. https://doi.org/10.1007/s11274-004-2041-7

    CAS  Article  Google Scholar 

  111. Günay, G., Yeşilel, O.Z., Darcan, C., Keskin, S., and Büyükgüngör, O., Inorg. Chim. Acta., 2013, vol. 399, pp. 19–35. https://doi.org/10.1016/j.ica.2012.12.036

    CAS  Article  Google Scholar 

  112. Opletalová, V., Pour, M., Kuneš, J., Buchta, V., Silva, L., Král’ová, K., Chlupáčová, M., Meltrová, D., Peterka, M., and Posledníková, M., Collect. Czechoslov. Chem. Comm., 2006, vol. 71 (1), pp. 44–58. https://doi.org/10.1135/cccc20060044

    CAS  Article  Google Scholar 

  113. Kim, J., Park, M., Choi, J., Singh, D.K., Kwon, H.J., Kim, S.H., and Kim, I., Bioorg. Med. Chem. Lett., 2019, vol. 29 (11), pp. 1350–1356. https://doi.org/10.1016/j.bmcl.2019.03.044

    CAS  Article  PubMed  Google Scholar 

  114. Kucerova-Chlupacova, M., Kunes, J., Buchta, V., Vejsova, M., and Opletalova, V., Molecules, 2015, vol. 20 (1), pp. 1104–1117. https://doi.org/10.3390/molecules20011104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Kucerova-Chlupacova, M., Vyskovska-Tyllova, V., Richterova-Finkova, L., Kunes, J., Buchta, V., Vejsova, M., Paterova, P., Semelkova, L., Jandourek, O., and Opletalova, V., Molecules, 2016, vol. 21 (11), pp. 1–16. https://doi.org/10.3390/molecules21111421

    CAS  Article  Google Scholar 

  116. Opletalová, V., Hartl, J., Patel, A., Palát, K., Buchta, V., Il Farmaco, 2002, vol. 57 (2), pp. 135–144. https://doi.org/10.1016/S0014-827X(01)01187-9

    Article  PubMed  Google Scholar 

  117. Ibsen, M.S., Connor, M., and Glass, M., Cannabis Cannabinoid Res., 2017, vol. 2 (1), pp. 48–60. https://doi.org/10.1089/can.2016.0037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Boström, J., Berggren, K., Elebring, T., Greasley, P.J., and Wilstermann, M., Bioorg. Med. Chem., 2007, vol. 15 (12), pp. 4077–4084. https://doi.org/10.1016/j.bmc.2007.03.075

    CAS  Article  PubMed  Google Scholar 

  119. Miniyar, P. and Makhija, S., J. Young Pharm., 2009, vol. 1 (2), pp. 165–169. https://doi.org/10.4103/0975-1483.55750

    CAS  Article  Google Scholar 

  120. Lima, H.S., Henriques, C.G.M.O., Candea, A.L.P., Lourenco, M.C.S., Bezerra, F.A.F.M., Ferreira, M.L., Kaiser, C.R., and de Souza, M.V.N., Med. Chem., 2011, vol. 7 (3), pp. 245–249. https://doi.org/10.2174/157340611795564303

    CAS  Article  PubMed  Google Scholar 

  121. Vergara, F.M.F., Lima, C.H. d.S., Henriques, M. das G.M. de O., Candéa, A.L.P., Lourenço, M.C.S., Ferreira, M. de L., Kaiser, C.R., and de Souza, M.V.N., Eur. J. Med. Chem., 2009, vol. 44 (12), pp. 4954–4959. https://doi.org/10.1016/j.ejmech.2009.08.009

    CAS  Article  PubMed  Google Scholar 

  122. Hassan, N.W., Saudi, M.N., Abdel-Ghany, Y.S., Ismail, A., Elzahhar, P.A., Sriram, D., Nassra, R., Abdel-Aziz, M.M., and El-Hawash, S.A., Bioorg. Chem., 2020, vol. 96, p. 103610. https://doi.org/10.1016/j.bioorg.2020.103610

    CAS  Article  PubMed  Google Scholar 

  123. Abdel-Aziz, M. and Abdel-Rahman, H.M.A., Eur. J. Med. Chem., 2010, vol. 45 (8), pp. 3384–3388. https://doi.org/10.1016/j.ejmech.2010.04.025

    CAS  Article  PubMed  Google Scholar 

  124. Chitre, T.S., Asgaonkar, K.D., Miniyar, P.B., Dharme, A.B., Arkile, M.A., Yeware, A., Sarkar, D., Khedkar, V.M., and Jha, P.C., Bioorg. Med. Chem. Lett., 2016, vol. 26 (9), pp. 2224–2228. https://doi.org/10.1016/j.bmcl.2016.03.055

    CAS  Article  PubMed  Google Scholar 

  125. Olczak, A., Główka, M.L., Gołka, J., Szczesio, M., Bojarska, J., Kozłowska, K., Foks, H., and Orlewska, C., J. Mol. Struct., 2007, vol. 830 (1-3), pp. 171–175. https://doi.org/10.1016/j.molstruc.2006.07.011

    CAS  Article  Google Scholar 

  126. Sinha, N., Jain, S., Tilekar, A., Upadhayaya, R.S., and Kishore, N., ARKIVOC, 2005, vol. 2, pp. 9–19.

    Google Scholar 

  127. Vinante, F. and Rigo, A., Toxins (Basel), 2013, vol. 5 (6), pp. 1180–1201. https://doi.org/10.3390/toxins5061180

    CAS  Article  Google Scholar 

  128. Yoshiizumi, K., Yamamoto, M., Miyasaka, T., Ito, Y., Kumihara, H., Sawa, M., Kiyoi, T., Yamamoto, T., Nakajima, F., Hirayama, R., Kondo, H., Ishibushi, E., Ohmoto, H., Inoue, Y., and Yoshino, K., Bioorg. Med. Chem., 2003, vol. 11 (3), pp. 433–450. https://doi.org/10.1016/S0968-0896(02)00426-1

    CAS  Article  PubMed  Google Scholar 

  129. Chylewska, A., Ogryzek, M., Głȩbocka, A., Sikorski, A., Turecka, K., Raczyńska, E.D., and Makowski, M., RSC Adv., 2016, vol. 6 (69), pp. 64499–64512. https://doi.org/10.1039/c6ra10537h

    CAS  Article  Google Scholar 

  130. Gezginci, M.H., Martin, A.R., and Franzblau, S.G., J. Med. Chem., 2001, vol. 44 (10), pp. 1560–1563. https://doi.org/10.1021/jm000350w

    CAS  Article  PubMed  Google Scholar 

  131. El-Azab, A.S., Mary, Y.S., Abdel-Aziz, A.A.M., Miniyar, P.B., Armaković, S., and Armaković, S.J., J. Mol. Struct., 2018, vol. 1156 (2018), pp. 657–674. https://doi.org/10.1016/j.molstruc.2017.12.018

  132. Al-Tamimi, A.M.S., Mary, Y.S., Miniyar, P.B., Al-Wahaibi, L.H., El-Emam, A.A., Armaković, S., and Armaković, S.J., J. Mol. Struct., 2018, vol. 1164, pp. 459–469. https://doi.org/10.1016/j.molstruc.2018.03.085

    CAS  Article  Google Scholar 

  133. Childress, E.S., Salamoun, J.M., Hargett, S.R., Alexopoulos, S.J., Chen, S.Y., Shah, D.P., Santiago-Rivera, J., Garcia, C.J., Dai, Y., Tucker, S.P., Hoehn, K.L., and Santos, W.L., J. Med. Chem., 2020, vol. 63 (5), pp. 2511–2526. https://doi.org/10.1021/acs.jmedchem.9b01440

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Elkamhawy, A., Park, J. eun, Hassan, A.H.E., Pae, A.N., Lee, J., Paik, S., Park, B.G., and Roh, E.J., Eur. J. Med. Chem., 2018, vol. 157, pp. 268–278. https://doi.org/10.1016/j.ejmech.2018.07.068

    CAS  Article  PubMed  Google Scholar 

  135. Mannam, M.R., Devineni, S.R., Pavuluri, C.M., Chamarthi, N.R., and Kottapalli, R.S.P., Phosphorus Sulfur Silicon Relat. Elem., 2019, vol. 194 (9), pp. 922–932. https://doi.org/10.1080/10426507.2019.1577845

    CAS  Article  Google Scholar 

  136. Fuccella, L.M., Tamassia, V., and Valzelli, G., J. Clin. Pharmacol. New Drugs, 1973, vol. 13 (2–3), pp. 68–75. https://doi.org/10.1002/j.1552-4604.1973.tb00255.x

    CAS  Article  PubMed  Google Scholar 

  137. Foster, R.H. and Plosker, G.L., Pharmacoeconomics, 2000, vol. 18 (3), pp. 289–306. https://doi.org/10.2165/00019053-200018030-00008

    CAS  Article  PubMed  Google Scholar 

  138. López-Ramos, M., Prudent, R., Moucadel, V., Sautel, C.F., Barette, C., Lafanechère, L., Mouawad, L., Grierson, D., Schmidt, F., Florent, J.C., Filippakopoulos, P., Bullock, A.N., Knapp, S., Reiser, J.B., and Cochet, C., FASEB J., 2010, vol. 24 (9), pp. 3171–3185. https://doi.org/10.1096/fj.09-143743

    CAS  Article  PubMed  Google Scholar 

  139. Gingipalli, L., Block, M.H., Bao, L., Cooke, E., Dakin, L.A., Denz, C.R., Ferguson, A.D., Johannes, J.W., Larsen, N.A., Lyne, P.D., Pontz, T.W., Wang, T., Wu, X., Wu, A., Zhang, H.J., Zheng, X., Dowling, J.E., and Lamb, M.L., Bioorg. Med. Chem. Lett., 2018, vol. 28 (8), pp. 1336–1341. https://doi.org/10.1016/j.bmcl.2018.03.018

    CAS  Article  PubMed  Google Scholar 

  140. Garzan, A., Willby, M.J., Ngo, H.X., Gajadeera, C.S., Green, K.D., Holbrook, S.Y.L., Hou, C., Posey, J.E., Tsodikov, O.V., and Garneau-Tsodikova, S., ACS Infect. Dis., 2017, vol. 3 (4), pp. 302–309. https://doi.org/10.1021/acsinfecdis.6b00193

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Zaki, R.M., Kamal El-Dean, A.M., Radwan, S.M., and Abd ul-Malik, M.A., Curr. Org. Synth., 2018, vol. 15 (6), pp. 863–871. https://doi.org/10.2174/1570179415666180607105627

    CAS  Article  Google Scholar 

  142. Foks, H., Trapkowska, I., Janowiec, M., Zwolska, Z., and Augustynowicz-Kopec, E., Chem. Heterocycl. Compd., 2004, vol. 40 (9), pp. 1185–1193. https://doi.org/10.1023/B:COHC.0000048293.68655.d5

    CAS  Article  Google Scholar 

  143. Bonde, C.G. and Gaikwad, N.J., Bioorg. Med. Chem., 2004, vol. 12 (9), pp. 2151–2161. https://doi.org/10.1016/j.bmc.2004.02.024

    CAS  Article  PubMed  Google Scholar 

  144. Semenza, G.L., Oncogene, 2010, vol. 29 (5), pp. 625–634. https://doi.org/10.1038/onc.2009.441

    CAS  Article  PubMed  Google Scholar 

  145. Lee, Y.H., Lee, J.M., Kim, S.G., and Lee, Y.S., Bioorg. Med. Chem., 2016, vol. 24 (12), pp. 2843–2851. https://doi.org/10.1016/j.bmc.2016.04.054

    CAS  Article  PubMed  Google Scholar 

  146. Gür, M., Şener, N., Muğlu, H., Çavuş, M.S., Özkan, O.E., Kandemirli, F., and Şener, İ., J. Mol. Struct., 2017, vol. 1139, pp. 111–118. https://doi.org/10.1016/j.molstruc.2017.03.019

    CAS  Article  Google Scholar 

  147. Vadabingi, N., Pulluru, H.B., Kollu, U., Chamarthi, N.R., Allagadda, R., and Chippada, A., Eur. J. Biomed. Pharm. Sci., 2017, vol. 4 (12), pp. 809–819.

    Google Scholar 

  148. Cugola, A., Donati, D., Guarneri, M., Micheli, F., Missio, A., Pecunioso, A., Reggiani, A., Tarzia, G., and Zanirato, V., Bioorg. Med. Chem. Lett., 1996, vol. 6 (22), pp. 2749–2754. https://doi.org/10.1016/S0960-894X(96)00492-1

    CAS  Article  Google Scholar 

  149. Srinivasarao, S., Nandikolla, A., Suresh, A., Calster, K. Van, De Voogt, L., Cappoen, D., Ghosh, B., Aggarwal, H., Murugesan, S., and Chandra Sekhar, K.V.G., RSC Adv., 2020, vol. 10 (21), pp. 12272–12288. https://doi.org/10.1039/d0ra01348j

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Matsui, T., Lallo, S., Nisa, K., and Morita, H., Bioorg. Med. Chem. Lett., 2017, vol. 27 (6), pp. 1420–1424. https://doi.org/10.1016/j.bmcl.2017.01.095

    CAS  Article  PubMed  Google Scholar 

  151. Mathew, B., Srivastava, S., Ross, L.J., Suling, W.J., White, E.L., Woolhiser, L.K., Lenaerts, A.J., and Reynolds, R.C., Bioorg. Med. Chem., 2011, vol. 19 (23), pp. 7120–7128. https://doi.org/10.1016/j.bmc.2011.09.062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Dowling, J.E., Vessels, J.T., Haque, S., He, X.C., Van Vloten, K., Kumaravel, G., Engber, T., Jin, X., Phadke, D., Wang, J., Ayyub, E., and Petter, R.C., Bioorg. Med. Chem. Lett., 2005, vol. 15 (21), pp. 4809–4813. https://doi.org/10.1016/j.bmcl.2005.07.052

    CAS  Article  PubMed  Google Scholar 

  153. Falsini, M., Catarzi, D., Varano, F., Ceni, C., Dal Ben, D., Marucci, G., Buccioni, M., Volpini, R., Di Cesare Mannelli, L. Lucarini, E., Ghelardini, C., Bartolucci, G., Menicatti, M., and Colotta, V., J., Med. Chem., 2019, vol. 62 (18), pp. 8511–8531. https://doi.org/10.1021/acs.jmedchem.9b00778

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. P.A. Inamdar, the President of MCE Society, Pune for providing the lab facilities.

Funding

We are thankful to the Department of Science and Technology, Govt. of India for providing financial assistance under DST-FIST (0 Level) to Abeda Inamdar Senior College, Pune vide letter number SR/FST/COLLEGE-277/2018 dated 20th December 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ahmed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH EHICAL STANDARDS

This article does not contain any studies involving human participants performed by any authors and does not contain any studies involving animals performed by any of these authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tambat, N., Mulani, S.K., Ahmad, A. et al. Pyrazine Derivatives—Versatile Scaffold. Russ J Bioorg Chem 48, 865–895 (2022). https://doi.org/10.1134/S1068162022050259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022050259

Keywords:

  • pyrazine
  • coelenterazine
  • anti-tubercular agents
  • diuretics
  • anticancer agents
  • antiviral
  • anti-diabetic agents