Skip to main content

SwissADME Predictions of Drug-Likeness of 5-Nitro Imidazole Derivatives as Potential Antimicrobial and Antifungal Agents

Abstract

Structure modification of existing drugs by incorporating different pharmacophores can enhance the biological profile and may impart new activities. The main objective of this work was to incorporate biologically active benzimidazole pharmacophore to metronidazole at the 2nd position without modifying the nitro group. Eleven compounds were designed and synthesized as per literature with little modification. The synthesized compounds were evaluated for antibacterial and antifungal activity by standard disc diffusion and agar well diffusion method respectively. Theoretical ADME values of the synthesized compounds were also calculated to seek their drug-likeness as antimicrobial agents. In particular, four of the eleven new derivatives (IIb), (IIg), (IIh), and (IIi) showed comparable antibacterial activity against all bacterial strains and two of the derivatives (IIb) and (IIi) showed potential antifungal activity against candida species even more than that of the standard drug. The theoretical prediction of ADME parameters suggests no violation of Lipinski’s rule of five. Thus, it can be predicted that the newly synthesized derivatives may possess a good pharmacokinetic profile.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Congiu, C., Cocco, M.T., and Onnis, V., Bioorg. Med. Chem. Lett., 2008, vol. 18, pp. 989–993. https://doi.org/10.1016/j.bmcl.2007.12.023

    CAS  Article  PubMed  Google Scholar 

  2. Yurttaş, L., Ertaş, M., Çiftçi, G.A., Temel, H.E., and Demirayak, S., Acta Pharm. Sci., 2017, vol. 55, pp. 39–47. https://doi.org/10.23893/1307-2080.APS.0553

    Article  Google Scholar 

  3. Venkatesan, A.M., Agarwal, A., Abe, T., Ushirogochi, H., Ado, M., Tsuyoshi, T., Dos Santos, O., Li, Z., Francisco, G., Lin, Y.I., Peterson, P.J., Yang, Y., Weiss, W.J., Shales, D.M., and Mansour, T.S., Bioorg. Med. Chem., 2008, vol. 16, pp. 1890–1902. https://doi.org/10.1016/j.bmc.2007.11.006

    CAS  Article  PubMed  Google Scholar 

  4. Nakamura, T., Kakinuma, H., Umemiya, H., Amada, H., Miyata, N., Taniguchi, K., Bando, K., and Sato, M., Bioorg. Med. Chem. Lett., 2004, vol. 14, pp. 333–336. https://doi.org/10.1016/j.bmcl.2003.11.005

    CAS  Article  PubMed  Google Scholar 

  5. Han, M.S. and Kim, D.H., Bioorg. Med. Chem. Lett., 2001, vol. 11, pp. 1425–1427. https://doi.org/10.1016/s0960-894x(01)00226-8

    CAS  Article  PubMed  Google Scholar 

  6. Roman, G., Riley, J.G., Vlahakis, J.Z., Kinobe, R.T., Brien, J.F., Nakatsu, K., and Szarek, W.A., Bioorg Med. Chem. Lett., 2007, vol. 15, pp. 3225–3234. https://doi.org/10.1016/j.bmc.2007.02.034

    CAS  Article  Google Scholar 

  7. Husain, A., Drabu, S., Kumar, N., Alam, M., and Bawa, S., J. Pharm. Bioallied. Sci., 2013, vol. 5, pp. 154–161. https://doi.org/10.4103/0975-7406.111822

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Li, Q., Hu, Q., Wang, X., Zong, Y., Zhao, L., Xing, J., Zhou, J., and Zhang, H., Chem. Biol. Drug Des., 2015, vol. 86, pp. 509–516. https://doi.org/10.1111/cbdd.12513

    CAS  Article  PubMed  Google Scholar 

  9. Sharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E., and Balzarini, J., Eur. J. Med. Chem., 2009, vol. 44, pp. 2347–2353. https://doi.org/10.1016/j.ejmech.2008.08.010

    CAS  Article  PubMed  Google Scholar 

  10. Fan, Y.-L., Jin, X.-H., Huang, Z.-P., Yu, H.-F., Zeng, Z.-G., Gao, T., and Feng, L.-S., Eur. J. Med. Chem., 2018, vol. 150, pp. 347–365. https://doi.org/10.1016/j.ejmech.2018.03.016

    CAS  Article  PubMed  Google Scholar 

  11. Adib, M., Peytam, F., Shourgeshty, R., Mohammadi-Khanaposhtani, M., Jahani, M., Imanparast, S., Faramarzi, A., Larijani, B., Moghadamnia, A.A., Esfahani, E.N., Bandarian, F., and Mahdavi, M., Bioorg. Med. Chem. Lett., 2019, vol. 29, pp. 713–718. https://doi.org/10.1016/j.bmcl.2019.01.012

    CAS  Article  PubMed  Google Scholar 

  12. Kondaparla, S., Manhas, A., Dola, V.R., Srivastava, K., Puri, S.K., and Katti, S.B., Bioorg. Chem., 2018, vol. 80, pp. 204–211. https://doi.org/10.1016/j.bioorg.2018.06.012

    CAS  Article  PubMed  Google Scholar 

  13. Banfi, E., Scialina, G., Zampieri, D., Mamolo, M.G., Bio, L., Ferrone, M., Fermeglia, M., Paneni, M.S., and Pricl, S., J. Antimicrob. Chemother., 2006, vol. 58, pp. 76–84. https://doi.org/10.1093/jac/dkl182

    CAS  Article  PubMed  Google Scholar 

  14. Mohd, A., Iftihar, A., Wasim, A., Khan, S.A., and Israr, A., Ind. J. Chem., 2011, vol. 50 (B), pp. 207–213. http://nopr.niscair.res.in/handle/123456789/11029.

  15. Rezaei, Z., Khabnadideh, S., Zomorodian, K., Pakshir, K., Kashi, G., Sanagoei, N., and Gholami, S., Arch. Pharm. (Weinheim), 2011, vol. 344, pp. 658–665. https://doi.org/10.1002/ardp.201000357

    CAS  Article  Google Scholar 

  16. Işik, A., Çevik, U.A., Sağlık, B.N., and Özkay, Y., J. Heterocycl. Chem., 2018, vol. 56, pp. 142–152. https://doi.org/10.1002/jhet.3388

    CAS  Article  Google Scholar 

  17. Altindağ, F.D., Sağlık, B.N., Çevik, U.A., Işikdağ, Í., Özkay, Y., and Gençer, H.K., Phosphorus Sulfur Silicon Relat. Elem., 2019, vol. 194, pp. 887–894. https://doi.org/10.1080/10426507.2019.1565761

    CAS  Article  Google Scholar 

  18. Ganguly, S., Vithlani, V., Kesharwani, A., Kuhu, R., Baskar, L., Mitramazumder, P., Sharon, A., and Dev, A., Acta Pharm. 2011, vol. 61, pp. 187–201. https://doi.org/10.2478/v10007-011-0018-2

    CAS  Article  PubMed  Google Scholar 

  19. Mallemula, V.R., Sanghai, N.N., Himabindu, V., and Chakravarthy, A.K., Res. Chem. Int., 2013, vol. 41, pp. 2125–2138. https://doi.org/10.1007/s11164-013-1335-5

    CAS  Article  Google Scholar 

  20. Plech, T., Wujec, M., Siwek, A., Kosikowska, U., and Malm, A., Eur. J. Med. Chem., 2011, vol. 46, pp. 241–248. https://doi.org/10.1016/j.ejmech.2010.11.010

    CAS  Article  PubMed  Google Scholar 

  21. Kossakowski, J., Krawiecka, M., Kuran, B., Stefańska, J., and Wolska, I., Molecules, 2010, vol. 15, pp. 4737–4749. https://doi.org/10.3390/molecules15074737

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Gu, W., Wu, R., Qi, S., Gu, C., Si, F., and Chen, Z. Molecules, 2012, vol. 17, pp. 4634–4650. https://doi.org/10.3390/molecules17044634

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Gurer-Orhan, H., Orhan, H., Suzen, S., Orhan Püsküllü, M., and Buyukbingol, E., J. Enzyme Inhib. Med. Chem., 2006, vol. 21, pp. 241–247. https://doi.org/10.1080/14756360600586031

    CAS  Article  PubMed  Google Scholar 

  24. Nofal, Z.M., Soliman, E.A., Abd El-Karim, S.S., Zahar, M.I.E., Srour, A.M., Sethumadhavan, S., and Maher, T.J., Acta Pol. Pharm., 2011, vol. 68, pp. 519–534.

    CAS  PubMed  Google Scholar 

  25. Kumar, J.R., Jawharand, J., and Pathak, D.P., J. Chem., 2006, vol. 3, pp. 278–285. https://doi.org/10.1155/2006/765712

    CAS  Article  Google Scholar 

  26. Lazer, E.S., Matteo, M.R., and Possanza, G.J., J. Med. Chem., 1987, vol. 30, pp. 726–729. https://doi.org/10.1021/jm00387a026

    CAS  Article  PubMed  Google Scholar 

  27. Achar, K.C., Hosamani, K.M., and Seetharamareddy, H.R., Eur. J. Med. Chem., 2010, vol. 45, pp. 2048–2054. https://doi.org/10.1016/j.ejmech.2010.01.029

    CAS  Article  PubMed  Google Scholar 

  28. Katiyar, S.K., Gordon, V.R., McLaughlin, G.L., and Edlind, T.D., Antimicrob. Agents Chemother., 1994, vol. 38, pp. 2086–2090. https://doi.org/10.1128/aac.38.9.2086

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Li, Y.F., Wang, G.F., He, P.L., Huang, W.G., Zhu, F.H., Gao, H.Y., Tang, W., Luo, Y., Feng, C.L., Shi, L.P., Ren, Y.D., Lu, W., and Zuo, J.P., J. Med. Chem., 2006, vol. 49, pp. 4790–4794. https://doi.org/10.1021/jm060330f

    CAS  Article  PubMed  Google Scholar 

  30. Cho, S.Y., Kang, S.K., Kim, S.S., Cheon, H.G., Choi, J.K., and Yum, E.M., Bull. Korean Chem. Soc., 2001, vol. 22, pp. 1217–1223. https://ocean.kisti.re.kr/downfile/volume/chemical/JCGMCS/2001/v22n11/JCGMCS_ 2001_v22n11_1217.pdf.

    CAS  Google Scholar 

  31. Shingalpur, R.V., Hosamani, K.M., Keri, R.S., and Hugar, M.H., Eur. J. Med. Chem., 2010, vol. 4, pp. 1735–1759. https://doi.org/10.1016/j.ejmech.2010.01.007

    CAS  Article  Google Scholar 

  32. Khabnadideh, S., Rezaei, Z., Pakshir, K., Zomorodian, K., and Ghafari, N., Res. Pharm. Sci., 2012, vol. 7, pp. 65–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chandrika, N.T., Shrestha, S.K., Ngo, H.X., and Garneau-Tsodikova, S., Bioorg. Med. Chem., 2016, vol. 24, pp. 3680–3686. https://doi.org/10.1016/j.bmc.2016.06.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Huang, D., Qui, F., Zhang, Z., Shi, L., Cao, C., and Ke, S., J. Heterocycl. Chem., 2019, vol. 56, pp. 2494–2498. https://doi.org/10.1002/jhet.3639

    CAS  Article  Google Scholar 

  35. Özkay, Y., Tunali, Y., Karaca, H., and Işikdağ, Í., Eur. J. Med. Chem., 2010, vol. 45, pp. 3293–3298. https://doi.org/10.1016/j.ejmech.2010.04.012

    CAS  Article  PubMed  Google Scholar 

  36. Bhinge, S.D. Chature, V., and Sonawane, L.V., Pharm. Chem. J., 2015, vol. 49, pp. 367–372. https://doi.org/10.1007/s11094-015-1287-8

    CAS  Article  Google Scholar 

  37. Atia, A.J.K., Molecule, 2009, vol. 14, pp. 2431–2446. https://doi.org/10.3390/molecules14072431

    CAS  Article  Google Scholar 

  38. Norris, J.F., Preparation of Terepthalic Acid from p-Toluic Acid, Experimental Organic Chemistry, 2nd ed.; Mc Graw-Hill Book Company, Inc.: New York, NY, USA, 1924, p. 173. https://library.sciencemadness.org/library/books/norris_experimental_organic_chemistry.pdf.

    Google Scholar 

  39. Tiwari, A.K. and Mishra, A., Indian J. Chem., 2006, vol. 45 (b), pp. 489–493. http://nopr.niscair.res.in/bitstream/123456789/6232/1/IJCB%2045B(2)%20489-493.pdf.

  40. Sahoo, P.K, Sharma, R., and Pattanayak, P., Med. Chem. Res., 2010, vol. 19, pp. 127–135. https://doi.org/10.1007/s00044-009-9178-8

    CAS  Article  Google Scholar 

  41. Husain, A., Varshney, M.M., Parcha, V., Ahmad, A., and Khan, S.A., Bangladesh J. Pharmacol., 2015, vol. 10, pp. 555–561. https://doi.org/10.3329/bjp.v10i3.23381

    Article  Google Scholar 

  42. Garammar, A., Antibiotic sensitivity and assay test, Microbiological Methods. Collins, C.H., Lyne, P.M., and Grange, J.M. (Eds.), Bulterworths and Co. Ltd., London, p 235, 1976.

    Google Scholar 

  43. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Deliv. Rev., 1997, vol. 23, pp. 3–25. https://doi.org/10.1016/s0169-409x(00)00129-0

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is thankful to Sri Jaydeva College of Pharmaceutical Sciences, Naharkanta, Bhubaneswar for providing the necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pattanayak.

Ethics declarations

Conflict of Interest

The author declares that he (she) has no conflicts of interest.

COMPLINCE WITH ETHICAL STANDARDS

This article does not contain studies that use humans and animal as objects of research.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pattanayak, P. SwissADME Predictions of Drug-Likeness of 5-Nitro Imidazole Derivatives as Potential Antimicrobial and Antifungal Agents. Russ J Bioorg Chem 48, 949–957 (2022). https://doi.org/10.1134/S1068162022050168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022050168

Keywords:

  • metronidazole
  • antibacterial activity
  • antifungal agent
  • Lipinski’s rule
  • ADME parameters
  • benzimidazole