Skip to main content

Advertisement

Log in

Bluetongue Virus Detection Using Microspheres Conjugated with Monoclonal Antibodies against Group-Specific Protein Vp7 by Flow Virometry

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

Bluetongue is a reemerging transmissive infectious disease that threatens all countries with intensive livestock production. In cattle, bluetongue may either lead to lethality or be asymptomatic with a long-lasting viremic phase, which makes development of high-sensitivity bluetongue virus detection methods an important task. Methods of virus particle detection based on immunofluorescence assay in bluetongue-infected Vero cells, sandwich enzyme immunoassay and flow virometry have been developed using high-affinity monoclonal antibodies against VP7 (viral protein 7). High analytical sensitivity of the method (10–0.25 TCID50/mL (tissue cytopathogenic dose)) was demonstrated in a flow cytometry assay. The ability to rapidly and efficiently detect virus particles in the biological fluids obtained from animals by flow virometry was demonstrated in a model system in which BTV was measured in cattle blood serum. The detection sensitivity was 100.75 TCID50/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mertens, P.P.C., Maan, S., Samuel, A., and Attoui, H., in Virus Taxonomy. Classification and Nomenclature of Viruses, Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A, Eds., Amsterdam: Elsevier Academic Press, 2005, pp. 466–483.

    Google Scholar 

  2. Maan, S., Maan, N.S., Belaganahalli, M.N., Potgieter, A.C., Kumar, V., Batra, K., Wright, I.M., Kirkland, P.D., and Mertens, P.P.C., PLoS One, 2016, vol. 11, p. e0163014. https://doi.org/10.1371/journal.pone.0163014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mertens, P.P.C., Diprose, J., Maan, S., Singh, K.P., Attoui, H., and Samuel, A.R., Vet. Ital., 2004, vol. 40, pp. 426–437.

    CAS  PubMed  Google Scholar 

  4. Mellor, P.S., Carpenter, S., Harrup, L., Baylis, M., and Mertens, P.P., Prev. Vet. Med., 2008, vol. 87, pp. 4–20. https://doi.org/10.1016/j.prevetmed.2008.06.002

    Article  PubMed  Google Scholar 

  5. Blacksell, S.D. and Lunt, R.A., J. Virol. Methods, 1993, vol. 44, pp. 241–250. https://doi.org/10.1016/0166-0934(93)90059-z

    Article  CAS  PubMed  Google Scholar 

  6. Hamblin, C., Vet. Ital., 2004, vol. 40, pp. 538–545.

    CAS  PubMed  Google Scholar 

  7. Clavijo, A., Heckert, R.A., Dulac, G.C., and Afshar, A., J. Virol. Methods, 2000, vol. 87, pp. 13–23. https://doi.org/10.1016/s0166-0934(00)00150-6

    Article  CAS  PubMed  Google Scholar 

  8. Nunamaker, R.A., Ellis, J.A., Wigington, J.G., and Maclachlan, N.J., Comp. Biochem. Physiol. Physiol., 1992, vol. 101, pp. 471–476. https://doi.org/10.1016/0300-9629(92)90496-d

    Article  CAS  Google Scholar 

  9. Zientara, S., Sailleau, C., Breard, E., Viarouge, C., Doceul, V., and Vitour, D., Vet. Ital., 2015, vol. 51, pp. 393–399. https://doi.org/10.12834/VetIt.512.3148.2

    Article  PubMed  Google Scholar 

  10. Wilson, W.C., Ma, H.C., Venter, E.H., van Djik, A.A., Seal, B.S., and Mecham, J.O., Virus Res., 2000, vol. 67, pp. 141–151. https://doi.org/10.1016/s0168-1702(00)00138-6

    Article  CAS  PubMed  Google Scholar 

  11. Breard, E., Garnier, A., Despres, P., Boisseau, S.B., Comtet, L., Viarouge, C., Bakkali-Kassimi, L., Pourquier, P., Hudelet, P., Vitour, D., Rossi, S., Belbis, G., Sailleau, C., and Zientara, S., Transbound. Emerg. Dis., 2017, vol. 64, pp. 1837–1847. https://doi.org/10.1111/tbed.12578

    Article  CAS  PubMed  Google Scholar 

  12. Stott, J.L., Barber, T.L., and Osburn, B.I., Am. J. Vet. Res., 1985, vol. 46, pp. 1043–1049.

    CAS  PubMed  Google Scholar 

  13. Rudenko, N.V., Karatovskaya, A.P., Tsfasman, I.M., Brovko, F.A., and Vasilyeva, N.V., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 526–530. https://doi.org/10.1134/S1068162017050119

    Article  CAS  Google Scholar 

  14. Reyes Zamora, J.L. and Aguilar, H.C., Methods, 2018, vol. 134–135, pp. 87–97. https://doi.org/10.1016/j.ymeth.2017.12.011

    Article  CAS  Google Scholar 

  15. Lippé, R., J. Virol., 2018, vol. 92, article no. e01765-17. https://doi.org/10.1128/JVI.01765-17

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yan, X., Zhong, W., Tang, A., Schielke, E.G., Hang, W., and Nolan, J.P., Anal. Chem., 2005, vol. 77, pp. 7673–7678. https://doi.org/10.1021/ac0508797

    Article  CAS  PubMed  Google Scholar 

  17. Arakelyan, A., Fitzgerald, W., Margolis, L., and Grivel, J.-C., J. Clin. Invest., 2013, vol. 123, pp. 3716–3727. https://doi.org/10.1172/JCI67042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arakelyan, A., Fitzgerald, W., King, D.F., Rogers, P., Cheeseman, H.M., Grivel, J.-C., Shattock, R.J., and Margolis, L., Sci. Rep., vol. 7, p. 948. https://doi.org/10.1038/s41598-017-00935-w

  19. Zicari, S., Arakelya, A., Fitzgerald, W., Zaitseva, E., Chernomordik, L.V., Margolis, L., and Grivel, J.-C., Virol. J., 2016, vol. 488, pp. 20–27. https://doi.org/10.1016/j.virol.2015.10.021

    Article  CAS  Google Scholar 

  20. Rudenko, N.V., Karatovskaya, A.P., Shepelyakovskaya, A.O., Zamyatina, A.V., Brovko, F.A., Ko ltsov, A.Yu., Imatdinov, I.R., Imatdinov, A.R., Strijakova, O.M., Mima, K.A., Lyska, V.M., and Kolbasov, D.V., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 505–513. https://doi.org/10.1134/S1068162019060347

    Article  CAS  Google Scholar 

  21. Grimes, J.M., Burroughs, J.N., Gouet, P., Diprose, J.M., Malby, R., Ziéntara, S., Mertens, P.P.C., and Stuart, D.I., Nature, 1998, vol. 395, pp. 470–478. https://doi.org/10.1038/26694

    Article  CAS  PubMed  Google Scholar 

  22. Hewat, E.A., Booth, T.F., and Roy, P.J., Struct. Biol., 1992, vol. 109, pp. 61–69. https://doi.org/10.1016/1047-8477(92)90068-l

    Article  CAS  Google Scholar 

  23. Lewis, S.A. and Grubman, M.J., Virus Res., 1990, vol. 16, pp. 17–26. https://doi.org/10.1016/0168-1702(90)90040-i

    Article  CAS  PubMed  Google Scholar 

  24. Wang, L.-F., Hyatt, A.D., Whiteley, P.L., Andrew, M., Li, J.K.-K., and Eaton, B.T., Arch. Virol., 1996, vol. 141, pp. 111–123. https://doi.org/10.1007/BF01718592

    Article  CAS  PubMed  Google Scholar 

  25. Karatovskaya, A.P., Rudenko, N.V., Tsfasman, I.M., Guseva, K.A., Laman, A.G., Boziev, K.M., Brovko, F.A., and Vasilyeva, N.V., Proc. Biochem., 2016, vol. 51, pp. 1521–1526. https://doi.org/10.1016/j.procbio.2016.06.009

    Article  CAS  Google Scholar 

  26. Rudenko, N.V., Abbasova, S.G., and Grishin, E.V., Russ. J. Bioorg. Chem., 2011, vol. 37, pp. 316–321. https://doi.org/10.1134/S1068162011030162

    Article  CAS  Google Scholar 

  27. Verwoerd, D.W., Els, H.J., De Villiers, E.M., and Huismans, H., J. Virol., 1972, vol. 10, pp. 783–794. https://doi.org/10.1128/JVI.10.4.783-794.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rojas, J.M., Rodriguez-Martin, D., Martin, V., and Sevilla, N., Vet. Med. (Auckl.), 2019, vol. 10, pp. 17–27. https://doi.org/10.2147/VMRR.S163804

    Article  Google Scholar 

  29. Martinelle, L., Dal Pozzo, F., Thys, C., De Leeuw, I., Van Campe, W., De Clercq, K., Thiry, E., and Saegerman, C., Vet. Res., 2018, vol. 49, p. 63. https://doi.org/10.1186/s13567-018-0556-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trotsenko, N.I., Praktikum po veterinarnoi virusologii (Veterenary Virusology Workshop), Belousov, R.V., Trotsenko, N.I., and Preobrazhenskaya, E.A., Eds., Moscow: Kolos, 2013, p. 248.

    Google Scholar 

  31. Hay, F.C. and Westwood, O.M.R., in Practical Immunology, 4th Edition, Hay, F.C., Westwood, O.M.R., and Nelson, P.N, Eds., Oxford: Blackwell Science, 2002, pp. 1–39.

  32. Velázquez-López, I., León-Cruz, E., Pardo, J.P., Sosa-Peinado, A., and González-Andrade, M., Anal. Biochem., 2017, vol. 516, pp. 13–22. https://doi.org/10.1016/j.ab.2016.10.011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Academy of Sciences State Task AAAA-A19-119050790041-1, topic ID 0101-2019-0038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Rudenko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

No experimentation involving animals or human was performed by any of the authors.

Conflict of Interests

The authors have no conflict of interest to declare.

Additional information

Translated by E. Martynova

Abbreviations: BTV, bluetongue virus; FBS, fetal bovine serum; FITC, fluorescein isothiocyanate; mAb, monoclonal antibodies; MIF, median intensity of fluorescence; MOI, multiplicity of infection; PE, phycoerythrin; SA-PE, phycoerythrin-labeled streptavidin; Sulfo-SMCC, sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate; VP7, virus protein 7; IIFA, indirect immunofluorescence assay; TCID, tissue culture infective dose.

Corresponding autor: phone: +7 (926) 592-11-89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenko, N.V., Karatovskaya, A.P., Zamyatina, A.V. et al. Bluetongue Virus Detection Using Microspheres Conjugated with Monoclonal Antibodies against Group-Specific Protein Vp7 by Flow Virometry. Russ J Bioorg Chem 48, 793–800 (2022). https://doi.org/10.1134/S1068162022040173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022040173

Keywords:

Navigation