Skip to main content

Novel Furochromone Derivatives of Potential Anticancer Activity Targeting EGFR Tyrosine Kinase. Synthesis and Molecular Docking Study

Abstract

In this study, a new class of furochromone derivatives bearing β-naphthol was synthesized via one-pot multicomponent reactions. First, condensation one mole of furochromone carbaldehyde (I) with two moles of β-naphthol afforded the corresponding Xanthene’ dye derivatives (II). A one-pot three-component reaction of (I), β-naphthol and urea or thiourea result in the formation of the corresponding oxazinones (IIIa, b). Moreover, reaction of (I) and β-naphthol with primary aromatic amines, heterocyclic amines or 2ry amines using triethyl amine as catalyst afforded the corresponding amino derivatives (IVXIII). On the other hand, a one-pot three-component reaction of (I) and β-naphthol with active methylene compounds namely, malononitrile, propionitrile, diethylmalonate methyl propionate or diethyl succinate led to the formation of furochromone derivatives (VIV)–(XVIII). The antitumor activities of certain selected new compounds were screened, in vitro, against a panel of three (liver, HepG2; breast, MCF-7, HepG-2 and PC-3) human solid tumor cell lines as well as the normal cell line (human normal melanocyte, HFB4) in comparison to the known anticancer drug: 5-fluorouracil using MTT assay. Our results showed that the vast majority of the newly synthesized derivatives did not exert any activity against the growth of HFB4normal cell line. Compounds (IV), (XIIIa), and (XIIIb) revealed remarkable anticancer activity against MCF-7 cell line with IC50 5.4, 4.65, and 6.09 μg/mL respectively compared to 5-fluorouracil (IC50 = 4.7 μg/mL). Moreover, compounds (IIIb), (VII), (IX), and (XVI) showed potent activity against HepG-2 cancer cell line of IC50 ranging from 5.57 to 6.34 μg/mL. Compound (VII) revealed also anticancer activity against PC-3 cancer cell line with IC50 6.77 μg/mL vs. 5.05 for 5-fluorouracil. The inhibitory activity of the most active anti-proliferative compounds (IIIb), (IV), (VII), (IX), (XIIIa, b) and (XVI) against EGFR were studied. Compound (VII) showed the best inhibitory activity against EGFR with IC50 39.93 ng/ml in comparison to erlotinib (IC50 29.18 ng/mL). Molecular docking simulation was performed to position compounds (IIIb), (IV), (VII), (IX), (XIIIa, b), and (XVI) into the EGFR active site to determine the probable binding mode.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 4.
Fig. 5.

REFERENCES

  1. Cooper, G.M., The Cell: A Molecular Approach, Sunderland, MA: Sinauer Associates, The Development and Causes of Cancer, 2000, 2nd ed. https://www.ncbi. nlm.nih.gov/books/NBK9963.

    Google Scholar 

  2. Schirrmacher, V., Int. J. Oncol., 2019, vol. 54, pp. 407–419. https://doi.org/10.3892/ijo.2018.4661

    CAS  Article  PubMed  Google Scholar 

  3. Szumilak, M., Wiktorowska-Owczarek, A., and Stanczak, A., Molecules, 2021, vol. 26, p. 2601. https://doi.org/10.3390/molecules26092601

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Elgazwy, A.S.H., Edrees, M.M., and Ismail, N.S.M., J. Enzyme Inhib. Med. Chem., 2013, vol. 28, pp. 1171–1181. https://doi.org/10.3109/14756366.2012.719504

    CAS  Article  PubMed  Google Scholar 

  5. Le, Y., Gan, Y., Fu, Y., Liu, J., Li, W., Zou, X., Zhou, Z., Wang, Z., Ouyang, G., and Yan, L., J. Enzyme Inhib. Med. Chem., 2020, vol. 35, pp. 555–564. https://doi.org/10.1080/14756366.2020.1715389

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chang, S.C., Lai, Y.C., Chang, C.Y., Huang, L.K., Chen, S.J., Tan, K.T., Yu, P.N., and Lai, J.I., Transl. Oncol., 2019, vol. 12, pp. 1425–1431. https://doi.org/10.1016/j.tranon.2019.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gan, Y., Shi, C., Inge, L., Hibner, M., Balducci, J. and Huang. Y., Oncogene, 2010, vol. 29, pp. 4947–4958. https://doi.org/10.1038/onc.2010.240

    CAS  Article  PubMed  Google Scholar 

  8. Barker, A.J., Gibson, K.H., Grundy, W., Godfrey, A.A., Barlow, J.J., Healy, M.P., Woodburn, J.R., Ashton, S.E., Curry, B.J., Scarlett, L., Henthorn, L. and Richards, L., Bioorg. Med. Chem. Lett., 2001, 11, 1911–1914. https://doi.org/10.1016/s0960-894x(01)00344-4

    CAS  Article  PubMed  Google Scholar 

  9. Higgins, B., Kolinsky, K., Smith, M., Beck, G., Rashed, M., Adames, V., Linn, M., Wheeldon E, Gand, L., Birnboeck, H., and Hoffmann, G., Anticancer Drugs, 2004, vol. 15, pp. 503–512. https://doi.org/10.1097/01.cad.0000127664.66472.60

    CAS  Article  PubMed  Google Scholar 

  10. Sequist, L. V., Waltman, B.A., Dias-Santagata, D., Digumarthy, S., Turke, A.B., Fidias, P., Bergethon, K., Shaw, A.T., Gettinger, S., Cosper, A.K., Akhavanfard, S., Heist, R.S., Temel, J., Christensen, J.G., Wain, J.C., Lynch, T.J., Vernovsky, K., Mark, E.J., Lanuti, M., Iafrate, A.J., Mino-Kenudson, M., and Engelman, J.A., Sci. Translat. Med., 2011, vol. 3, pp. 75–101. https://doi.org/10.1126/scitranslmed.3002003

    Article  Google Scholar 

  11. Thress, K.S., Paweletz, C.P., Felip, E., Cho, B.C., Stetson, D., Dougherty, B., Lai, Z., Markovets, A., Vivancos, A., Kuang, Y., Ercan, D., Matthews, S.E., Cantarini, M., Barrett, J.C., Jänne, P.A. and Oxnard, G.R., Nat. Med., 2015, vol. 21, pp. 560–562. https://doi.org/10.1038/nm.3854

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Franchi, G.G., Bovalini, L., Martelli, P., Ferri, S. and Sbardellati, E., J. Ethnopharmacol., 1985, vol. 14, pp. 203–212. https://doi.org/10.1016/0378-8741(85)90088-1

    CAS  Article  PubMed  Google Scholar 

  13. Ullrich, A. and Schlessinger, J., Cell, 1990, vol. 61, pp. 203–212. https://doi.org/10.1016/0092-8674(90)90801-k

    CAS  Article  PubMed  Google Scholar 

  14. Hubbard, S.R. and Till, J.H., Annu. Rev. Biochem., 2000, vol. 69, pp. 373–398. https://doi.org/10.1146/annurev.biochem.69.1.373

    CAS  Article  PubMed  Google Scholar 

  15. Dai, Y., Guo, Y., Frey, R.R., Ji, Z., Curtin, M.L., Ahmed A.A., Albert, D.H., Arnold, L., Arries S.S., Barlozzari, T., Bauch, J.L., Bouska, J.J., P.F. Bousquet, Cunha, G.A., Glaser, K.B., Guo, J., Li, J., Marcotte, P.A., Marsh, K.C., Moskey, M.D., Pease, L.J., Stewart, K.D., Stoll,V.S., Tapang, P., Wishart, N., Davidsen, S.K., and Michaelides, M.R. J. Med. Chem., 2005, vol. 48, pp. 6066–6083. https://doi.org/10.1021/jm050458h

    CAS  Article  PubMed  Google Scholar 

  16. Chaudhary, A., Mol. Diversity, 2021, vol. 25, pp. 1211–1245. https://doi.org/10.1007/s11030-020-10076-4

    CAS  Article  Google Scholar 

  17. Nishiyama, T., Sakita, K., Fuchigami, T., and Tsutomu, F.T., Polym. Degrad. Stab., 1998, vol. 62, pp. 529–534. https://doi.org/10.1016/S0141-3910(98)0038-X

    CAS  Article  Google Scholar 

  18. Zelefack, F., Guilet, D., Fabre, N., Bayet, C., Chevalle, S., Ngouela, S., Lenta, B. N., Valentin, A., Tsamo, E., and Dijoux-Franca, M.G., J. Nat. Prod., 2009, vol. 72, pp. 954–957.

    CAS  Article  Google Scholar 

  19. Wan, Y., Wang, C., Wang, H., Zhao, L., Zhang, X., Shi, J., and Wu, H., J. Heterocycl. Chem., 2014, vol. 51, pp. 1293–1297. https://doi.org/10.1002/jhet.1658

    CAS  Article  Google Scholar 

  20. Bhattacharjee, S., Gattu, R., and Khan, A.T., Chem. Select., 2018, vol. 3, pp. 4760–4763. https://doi.org/10.1002/slct.201800372

    CAS  Article  Google Scholar 

  21. Devi, K.M., Chanu, L.G., Chanu, I.S., and Singh, O.M., Lett. Org. Chem., 2014, vol. 11, pp. 743–747.

    CAS  Article  Google Scholar 

  22. Mathew, B.P., Kumar, A., Sharma, S., and Shukla, P.K., Eur. J. Med. Chem., 2010, vol. 45, pp. 1502–1507. https://doi.org/10.1016/j.ejmech.2009.12.058

    CAS  Article  PubMed  Google Scholar 

  23. Vahabinia, H.R., Karami, B., and Khodabakhshi, S., J. Chin. Chem. Soc., 2013, vol. 60, pp. 1323–1327. https://doi.org/10.1002/jccs.201300126

    CAS  Article  Google Scholar 

  24. Singh, M., Nandi, G., and Samai, S., Synlett., 2010, vol. 7, pp. 1133–1137. https://doi.org/10.1055/s-0029-1219574

    CAS  Article  Google Scholar 

  25. Zhi, S., Ma, X., and Zhang, W., Org. Biomol. Chem., 2019, vol. 17, pp. 7632–7650. https://doi.org/10.1039/C9OB00772E

    CAS  Article  PubMed  Google Scholar 

  26. Barra, I.A., Islas-Jácome, A., and González-Zamora, E., Org. Biomol. Chem., 2018, vol. 16, pp. 1402–1418. https://doi.org/10.1039/c7ob02305g

    CAS  Article  Google Scholar 

  27. Shabir, G. and Saeed, A., J. Chil. Chem. Soc., 2016, vol. 61, pp. 2907–2912. https://doi.org/10.4067/S0717-97072016000200012

    CAS  Article  Google Scholar 

  28. Cardellicchio, C., Capozzi, M.A.M., and Naso, F., Tetrahedron, 2010, vol. 21, pp. 507–517. https://doi.org/10.1016/j.tetasy.2010.03.020

    CAS  Article  Google Scholar 

  29. Stamos, J., Sliwkowski, M.X., and Eigenbrot, C., J. Biol. Chem., 2002, vol. 277, pp. 46265–46272. https://doi.org/10.1074/jbc.M207135200

    CAS  Article  PubMed  Google Scholar 

  30. Raymond, E., Faivre, S., and Armand, J.P., Drugs, 2000, vol. 60, pp. 15–23. https://doi.org/10.2165/00003495-200060001-00002

    CAS  Article  PubMed  Google Scholar 

  31. Nakamura, J.L., Expert Opin. Ther. Targets, 2007, vol. 11, pp. 463–472. https://doi.org/10.1517/14728222.11.4.463

    CAS  Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Esam Rashwan, Head of the confirmatory diagnostic unit VACSERA-EGYPT, for carrying out the enzyme assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Abo-Salem.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the author.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fawzy, N.M., Ahmed, K.M., Abo-Salem, H.M. et al. Novel Furochromone Derivatives of Potential Anticancer Activity Targeting EGFR Tyrosine Kinase. Synthesis and Molecular Docking Study. Russ J Bioorg Chem 48, 749–767 (2022). https://doi.org/10.1134/S1068162022040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022040082

Keywords:

  • furochromones
  • β-napthol
  • anticancer activity
  • docking
  • EGFR tyrosine kinase