Skip to main content

Comprehensive Review on Versatile Pharmacology of Quinoxaline Derivative

Abstract

Quinoxaline is a nitrogen-containing heterocyclic compound having many pharmaceutical and industrial purposes. It can be synthesized by adopting green chemistry principles. The quinoxaline containing drugs such as Olaquindox, Echinomycin, Atinoleutin, Levomycin, and Carbadox are currently used as an antibiotic in the market. The objective of this review is to enumerate the various multifunctional property of the quinoxaline moiety. This present review contains the newer quinoxaline derivatives against many targets, receptors, or microorganisms. This work comprises the study on quinoxaline as a core unit from the year 2002 to 2020. All the collected literature has been combined and highlighted for the effective use of that particular derivative. Various potent quinoxaline compounds have been analyzed in the literature. About 50 papers have been reviewed for the novel quinoxaline compounds, the potent derivatives have been reported, and structures were given. The critical role of the quinoxaline on the various heterocyclic moieties has been given more attention in this review. This review paves the way as a source of references for the further development of drug discovery in the wide spectrum of its biological importance.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.
Fig. 52.
Fig. 53.

REFERENCES

  1. Körner, G., Ber. Dtsch. Chem. Ges., 1884, vol. 17, pp. 572–573.

    Article  Google Scholar 

  2. Hinsberg, O., Ber. Der Dtsch. Chem. Ges., 1884, vol. 17, pp. 318–323. https://doi.org/10.1002/cber.18840170193

    Article  Google Scholar 

  3. Brown, D.J., Chemistry of Heterocyclic Compounds: A Series of Monographs. vol. 52, The Pyrimidines, Hoboken, NJ, Wiley-Interscience, 1950.

  4. Haworth, R.D. and Robinson, S., J. Chem. Soc., 1948, pp. 777–782.

  5. Crowther, A.F., Curd, F.H.S., Davey, D.G., and Stacey, G.J., J. Chem. Soc., 1949, pp. 1260–1271. https://doi.org/10.1039/JR9490001260

  6. Dandegaonker, H. and Mesta, C.K., J. Med. Chem., 1965, vol. 8, pp. 884–886. https://doi.org/10.1021/jm00330a043

    CAS  Article  PubMed  Google Scholar 

  7. Harmenberg, J., Wahren, B., Bergman, J., Akerfeldt, S., and Lundblad, L., Antimicrob. Agents Chemother., 1988, vol. 32, pp. 1720–1724. https://doi.org/10.1128/AAC.32.11.1720

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Kleim, J.P., Bender, R., Billhardt, U.M., Meichsner, C., Riess, G., Rosner, M., Winkler, I., and Paessens, A., Antimicrob. Agents Chemother., 1993, vol. 37, pp. 1659–1664. https://doi.org/10.1128/AAC.37.8.1659

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Romváry, A. and Simon, F., Acta Vet. Hung., 1992, vol. 40, pp. 99–106.

    PubMed  Google Scholar 

  10. Sato, M., Nakazawa, T., Tsunematsu, Y., Hotta, K., and Watanabe, K., Curr. Opin. Chem. Biol., 2013, vol. 17, pp. 537–545. https://doi.org/10.1016/j.cbpa.2013.06.022

    CAS  Article  PubMed  Google Scholar 

  11. Carter, H.E., Schaffner, C.P., and Gottlieb, D., Arch. Biochem. Biophys., 1954, vol. 53, pp. 282–293. https://doi.org/10.1016/0003-9861(54)90251-9

    CAS  Article  PubMed  Google Scholar 

  12. Christie, A.B., Mitchell, A.A.B., and Walker, R.S., Scott. Med. J., 1966, vol. 11, pp. 176–181. https://doi.org/10.1177/003693306601100505

    CAS  Article  PubMed  Google Scholar 

  13. Ponnurangam, S., Dandawate, P.R., Dhar, A., Tawfik, O.W., Parab, R.R., Mishra, P.D., Ranadive, P., Sharma, R., Mahajan, G., Umar, S., Weir, S.J., Sugumar, A., Jensen, R.A., Padhye, S.B., Balakrishnan, A., Anant, S., and Subramaniam, D., Oncotarget, 2016, vol. 7, pp. 3217–3232. https://doi.org/10.18632/oncotarget.6560

    Article  PubMed  Google Scholar 

  14. Jordan, C.J. and Xi, Z.X., Expert Opin. Drug Discov., 2018, vol. 13, pp. 671–683. https://doi.org/10.1080/17460441.2018.1458090

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Rahman, M.Q., Ramaesh, K., and Montgomery, D.M., Expert Opin. Drug Saf., 2010, vol. 9, pp. 483–491. https://doi.org/10.1517/14740331003709736

    CAS  Article  PubMed  Google Scholar 

  16. Oh, D.J., Chen, J.L., Vajaranant, T.S., and Dikopf, M.S., Expert Opin. Pharmacother., 2019, vol. 20, no. 1, pp. 115–122. https://doi.org/10.1080/14656566.2018.1544241

    CAS  Article  PubMed  Google Scholar 

  17. Lusthaus, J.A. and Goldberg, I., Expert Opin. Drug Saf., 2017, vol. 16, pp. 1071–1078. https://doi.org/10.1080/14740338.2017.1346083

    CAS  Article  PubMed  Google Scholar 

  18. Lee, D.A., Clin. Ther., 2000, vol. 22, pp. 53–65. https://doi.org/10.1016/S0149-2918(00)87977-1

    CAS  Article  PubMed  Google Scholar 

  19. Kim, J.H., Kim, J.H., Lee, G.E., Kim, S.W., and Chung, I.K., Biochem. J., 2003, vol. 373, pp. 523–529. https://doi.org/10.1042/BJ20030363

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Zhu, B., Zhang, T., Jiang, Q., Li, Y., Fu, Y., Dai, J., Li, G., Qi, Q., and Cheng, Y., Chem. Commun., 2018, vol. 54, pp. 11558–11561. https://doi.org/10.1039/c8cc06897f

    CAS  Article  Google Scholar 

  21. Singh, S.K., Saibaba, V., Ravikumar, V., Rudrawar, S.V., Daga, P., Rao, C.S., Akhila, V., Hegde, P., and Rao, Y.K., Bioorg. Med. Chem., 2004, vol. 12, pp. 1881–1893. https://doi.org/10.1016/j.bmc.2004.01.033

    CAS  Article  PubMed  Google Scholar 

  22. Jacobsen, E.J., Stelzer, L.S., Belonga, K.L., Carter, D.B., Bin, Im.W., Sethy, V.H., Tang, A.H., Von Voigtlander, P.F., and Petke, J.D., J. Med. Chem., 1996, vol. 39, pp. 3820–3836. https://doi.org/10.1021/jm960070+

    CAS  Article  PubMed  Google Scholar 

  23. Suter, W., Rosselet, A., and Knuesel, F., Antimicrob. Agents Chemother., 1978, vol. 13, pp. 770–783. https://doi.org/10.1128/AAC.13.5.770

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Ortega, M.Á., Sainz, Y., Montoya, M.E., Jaso, A., Zarranz, B., Aldana, I., and Monge, A., Arzneimittel-Forschung/Drug Res., 2002, vol. 52, pp. 113–119. https://doi.org/10.1055/s-0031-1299866

    CAS  Article  Google Scholar 

  25. Tapia, R.A., Prieto, Y., Pautet, F., Walchshofer, N., Fillion, H., Fenet, B., and Sarciron, M.E., Bioorg. Med. Chem., 2003, vol. 11, pp. 3407–3412. https://doi.org/10.1016/S0968-0896(03)00311-0

    CAS  Article  PubMed  Google Scholar 

  26. Monge, A., Palop, J.A., Urbasos, I., and Fernández-Alvarez, E., J. Heterocycl. Chem., 1989, vol. 26, pp. 1623–1626. https://doi.org/10.1002/jhet.5570260621

    CAS  Article  Google Scholar 

  27. Burguete, A., Pontiki, E., Hadjipavlou-Litina, D., Ancizu, S., Villar, R., Solano, B., Moreno, E., Torres, E., Pérez, S., Aldana, I., and Monge, A., Chem. Biol. Drug Des., 2011, vol. 77, pp. 255–267. https://doi.org/10.1111/j.1747-0285.2011.01076.x

    CAS  Article  PubMed  Google Scholar 

  28. Puratchikody, A., Natarajan, R., Jayapal, M., and Doble, M., Chem. Biol. Drug Des., 2011, vol. 78, pp. 988–998. https://doi.org/10.1111/j.1747-0285.2011.01246.x

    CAS  Article  PubMed  Google Scholar 

  29. Puratchikody, A., Natarajan, R., Doble, M., Hema Iswarya, S., and Vijayabharathi, R., Med. Chem. (LA), 2013, vol. 9, pp. 275–286. https://doi.org/10.2174/1573406411309020010

    CAS  Article  PubMed  Google Scholar 

  30. Natarajan, R., Puratchikody, A., Muralidharan, V., Doble, M., and Subramani, A., Curr. Comput. Aided. Drug Des., 2018, vol. 15, pp. 182–192. https://doi.org/10.2174/1573409914666181011145922

    CAS  Article  Google Scholar 

  31. Natarajan, R., Subramani, A., Kesavan, S.K., and Selvaraj, D., J. Pharm. Res., 2013, vol. 1, pp. 775–780.

    Google Scholar 

  32. Puratchikody, A., Doble, M., and Ramalakshmi, N., Rasayan J. Chem., 2011, vol. 4, pp. 636–639.

    CAS  Google Scholar 

  33. Ali, I., Lee, J., Go, A., Choi, G., and Lee, K., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 4606–4613. https://doi.org/10.1016/j.bmcl.2017.09.025

    CAS  Article  PubMed  Google Scholar 

  34. Eissa, I.H., El-Naggar, A.M., El-Sattar, N.E.A.A., and Youssef, A.S.A., Anticancer Agents Med. Chem., 2018, vol. 18, pp. 195–209. https://doi.org/10.2174/1871520617666170710182405

    CAS  Article  PubMed  Google Scholar 

  35. Gu, W., Wang, S., Jin, X., Zhang, Y., Hua, D., Miao, T., Tao, X., and Wang, S., Molecules, 2017, vol. 22, p. 1154. https://doi.org/10.3390/molecules22071154

    CAS  Article  PubMed Central  Google Scholar 

  36. Abbas, H.A.S., Al-Marhabi, A.R., Eissa, S.I., and Ammar, Y.A., Bioorg. Med. Chem., 2015, vol. 23, pp. 6560–6572. https://doi.org/10.1016/j.bmc.2015.09.023

    CAS  Article  PubMed  Google Scholar 

  37. Ghanbarimasir, Z., Bekhradnia, A., Morteza-Semnani, K., Rafiei, A., Razzaghi-Asl, N., and Kardan, M., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2018, vol. 194, pp. 21–35.

    CAS  Article  Google Scholar 

  38. Scherbakov, A.M., Borunov, A.M., Buravchenko, G.I., Andreeva, O.E., Kudryavtsev, I.A., Dezhenkova, L.G., and Shchekotikhin, A.E., Cancer Invest., 2018, vol. 36, pp. 199–209. https://doi.org/10.1080/07357907.2018.1453072

    Article  PubMed  Google Scholar 

  39. El Newahie, A.M.S., Nissan, Y.M., Ismail, N.S.M., Abou El Ella, D.A., Khojah, S.M., and Abouzid, K.A.M., Molecules, 2019, vol. 24, p. 1175. https://doi.org/10.3390/molecules24061175

    CAS  Article  PubMed Central  Google Scholar 

  40. Guillon, J., Savrimoutou, S., Rubio, S., Moreau, S., Pinaud, N., Marchivie, M., and Desplat, V., Molbank, 2020. https://doi.org/10.3390/M1113

  41. El-Atawy, M.A., Hamed, E.A., Alhadi, M., and Omar, A.Z., Molecules, 2019, vol. 24, p. 4198. https://doi.org/10.3390/molecules24224198

    CAS  Article  PubMed Central  Google Scholar 

  42. Saravanan, G., Selvam, T.P., Alagarsamy, V., Kunjiappan, S., Joshi, S.D., Indhumathy, M., and Kumar, P.D., Drug Res. (Stuttg)., 2018, vol. 68, pp. 250–262. https://doi.org/10.1055/s-0043-120198

    CAS  Article  Google Scholar 

  43. Zhang, H., Zhang, J., Qu, W., Xie, S., Huang, L., Chen, D., Tao, Y., Liu, Z., Pan, Y., and Yuan, Z., Front. Chem., 2020, vol. 8, p. 598. https://doi.org/10.3389/fchem.2020.00598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Ammar, Y.A., Farag, A.A., Ali, A.M., Ragab, A., Askar, A.A., Elsisi, D.M., and Belal, A., Bioorg. Chem., 2020, vol. 104, article ID 104164. https://doi.org/10.1016/j.bioorg.2020.104164

    CAS  Article  PubMed  Google Scholar 

  45. Zhang, T.X., Zhang, W.X., Zhu, H.J., Liang, L., Cheng, Z.P., and Luo, M.M., Asian J. Chem., 2014, vol. 26, pp. 2344–2350. https://doi.org/10.14233/ajchem.2014.15949

    CAS  Article  Google Scholar 

  46. Goyal Rakesh, Sharma Mukesh, and Ahuja Dharmendra J.A., J. Drug Deliv. Ther., 2019, vol. 9, no. 4A, pp. 921–927. https://doi.org/10.22270/jddt.v9i4.3016

    Article  Google Scholar 

  47. Ingle, R. and Shailesh, W., Int. J. Pharm. Chem., 2014.

  48. Xu, H. and Fan, L.L., Eur. J. Med. Chem., 2011, vol. 46, pp. 1919–1925. https://doi.org/10.1016/j.ejmech.2011.02.035

    CAS  Article  PubMed  Google Scholar 

  49. Soliman, D.H., Int. J. Org. Chem., 2013, vol. 03, pp. 65–72. https://doi.org/10.4236/ijoc.2013.33a007

    Article  Google Scholar 

  50. Henen, M.A., El Bialy, S.A.A., Goda, F.E., Nasr, M.N.A., and Eisa, H.M., Med. Chem. Res., 2012, vol. 21, pp. 2368–2378. https://doi.org/10.1007/s00044-011-9753-7

    CAS  Article  Google Scholar 

  51. Elhelby, A.A., Ayyad, R.R., and Zayed, M.F., Arzneimittel-Forschung/Drug Res., 2011, vol. 61, pp. 379–381. https://doi.org/10.1055/s-0031-1296214

    CAS  Article  Google Scholar 

  52. Elhelby, A.A., Ayyad, R.R., and Zayed, M.F., Arzneimittel-Forschung/Drug Res., 2011, vol. 61, pp. 379–381. https://doi.org/10.1055/s-0031-1296214

    CAS  Article  Google Scholar 

  53. Wagle, S., Adhikari, A.V., and Kumari, N.S., Eur. J. Med. Chem., 2009, vol. 44, pp. 1135–1143. https://doi.org/10.1016/j.ejmech.2008.06.006

    CAS  Article  PubMed  Google Scholar 

  54. Wang, T., Tang, Y., Yang, Y., An, Q., Sang, Z., Yang, T., Liu, P., Zhang, T., Deng, Y., and Luo, Y., Bioorg. Med. Chem. Lett., 2018, vol. 28, pp. 2084–2090. https://doi.org/10.1016/j.bmcl.2018.04.043

    CAS  Article  PubMed  Google Scholar 

  55. Jaso, A., Zarranz, B., Aldana, I., and Monge, A., Eur. J. Med. Chem., 2003, vol. 38, pp. 791–800. https://doi.org/10.1016/S0223-5234(03)00137-5

    CAS  Article  PubMed  Google Scholar 

  56. Palos, I., Luna-Herrera, J., Lara-Ramírez, E.E., Loera-Piedra, A., Fernández-Ramírez, E., Guadalupe Aguilera-Arreola, M., Paz-González, A.D., Monge, A., Wan, B., Franzblau, S., and Rivera, G., Molecules, 2018, vol. 23, p. 1453. https://doi.org/10.3390/molecules23061453

    CAS  Article  PubMed Central  Google Scholar 

  57. Santivañez-Veliz, M., Pérez-Silanes, S., Torres, E., and Moreno-Viguri, E., Bioor. Med. Chem. Lett., 2016, vol. 26, pp. 2188–2193. https://doi.org/10.1016/j.bmcl.2016.03.066

    CAS  Article  Google Scholar 

  58. Waring, M.J., Ben-Hadda, T., Kotchevar, A.T., Ramdani, A., Touzani, R., Elkadiri, S., Hakkou, A., Bouakka, M., and Ellis, T., Molecules, 2002, vol. 7, pp. 641–656. https://doi.org/10.3390/70800641

    CAS  Article  PubMed Central  Google Scholar 

  59. Zhai, Q., Rahardjo, H., Satyanaga, A., Zhu, Y., Dai, G., and Zhao, X., Eng. Geol., 2021, vol. 285, article ID 106034. https://doi.org/10.1016/j.enggeo.2021.106034

    Article  Google Scholar 

  60. Gil, A., Pabón, A., Galiano, S., Burguete, A., Pérez-Silanes, S., Deharo, E., Monge, A., and Aldana, I., Molecules, 2014, vol. 19, pp. 2166–2180. https://doi.org/10.3390/molecules19022166

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Barea, C., Pabón, A., Pérez-Silanes, S., Galiano, S., Gonzalez, G., Monge, A., Deharo, E., and Aldana, I., Molecules, 2013, vol. 18, pp. 4718–4727. https://doi.org/10.3390/molecules18044718

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Vicente, E., Charnaud, S., Bongard, E., Villar, R., Burguete, A., Solano, B., Ancizu, S., Pérez-Silanes, S., Aldana, I., and Vivas, L., Molecules, 2008, vol. 13, pp. 69–77

    CAS  Article  Google Scholar 

  63. Quiliano, M., Pabón, A., Ramirez-Calderon, G., Barea, C., Deharo, E., Galiano, S., and Aldana, I., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 1820–1825. https://doi.org/10.1016/j.bmcl.2017.02.049

    CAS  Article  PubMed  Google Scholar 

  64. Primas, N., Suzanne, P., Verhaeghe, P., Hutter, S., Kieffer, C., Laget, M., Cohen, A., Broggi, J., Lancelot, J.C., Lesnard, A., Dallemagne, P., Rathelot, P., Rault, S., Vanelle, P., and Azas, N., Eur. J. Med. Chem., 2014, vol. 83, pp. 26–35. https://doi.org/10.1016/j.ejmech.2014.06.014

    CAS  Article  PubMed  Google Scholar 

  65. Barea, C., Pabón, A., Galiano, S., Pérez-Silanes, S., Gonzalez, G., Deyssard, C., Monge, A., Deharo, E., and Aldana, I., Molecules, 2012, vol. 17, pp. 9451–9461. https://doi.org/10.3390/molecules17089451

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Rashid, H. ur, Xu, Y., Muhammad, Y., Wang, L., and Jiang, J., Eur. J. Med. Chem., 2019, vol. 161, pp. 205–238. https://doi.org/10.1016/j.ejmech.2018.10.037

    CAS  Article  PubMed  Google Scholar 

  67. Cogo, J., Kaplum, V., Sangi, D.P., Ueda-Nakamura, T., Correa, A.G., and Nakamura, C.V., Eur. J. Med. Chem., 2015, vol. 90, pp. 107–123. https://doi.org/10.1016/j.ejmech.2014.11.018

    CAS  Article  PubMed  Google Scholar 

  68. Patel, S.B., Patel, B.D., Pannecouque, C., and Bhatt, H.G., Eur. J. Med. Chem., 2016, vol. 117, pp. 230–240. https://doi.org/10.1016/j.ejmech.2016.04.019

    CAS  Article  PubMed  Google Scholar 

  69. Fabian, L., Taverna Porro, M., Gómez, N., Salvatori, M., Turk, G., Estrin, D., and Moglioni, A., Eur. J. Med. Chem., 2020, vol. 188, article ID 111987. https://doi.org/10.1016/j.ejmech.2019.111987

    CAS  Article  PubMed  Google Scholar 

  70. Fan, L.L., Huang, N., Yang, R.G., He, S.Z., Yang, L.M., Xu, H., and Zheng, Y.T., Lett. Drug Des. Discov., 2012, vol. 9, pp. 44–47. https://doi.org/10.2174/157018012798193026

    CAS  Article  Google Scholar 

  71. Ingle, R.G. and Marathe, R.P., Int. J. Pharm. Res. Allied Sci., 2012, vol. 1, pp. 46–51.

    CAS  Google Scholar 

  72. Hossain, M.M., Hossain, M.M., Muhib, M.H., Mia, M.R., Kumar, S., and Wadud, S.A., Bangladesh Med. Res. Counc. Bull., 2012, vol. 38, pp. 47–50. https://doi.org/10.3329/bmrcb.v38i2.12880

    CAS  Article  PubMed  Google Scholar 

  73. Sagar, S.R., Singh, D.P., Das, R.D., Panchal, N.B., Sudarsanam, V., Nivsarkar, M., and Vasu, K.K., Bioorg. Chem., 2019, vol. 89, pp. 102992. https://doi.org/10.1016/j.bioorg.2019.102992

    CAS  Article  PubMed  Google Scholar 

  74. Kanhed, A.M., Patel, D.V., Patel, N.R., Sinha, A., Thakor, P.S., Patel, K.B., Prajapati, N.K., Patel, K.V., and Yadav, M.R., J. Biomol. Struct. Dyn., 2020, pp. 1–18. https://doi.org/10.1080/07391102.2020.1840441

  75. Mahajan, S., Slathia, N., Nuthakki, V.K., Bharate, S.B., and Kapoor, K.K., RSC Adv., 2020, vol. 10, pp. 15966–15975

    CAS  Article  Google Scholar 

  76. Mahajan, S., Slathia, N., Nuthakki, V.K., Bharate, S.B., and Kapoor, K.K., RSC Adv., 2020, vol. 10, pp. 15966–15975. https://doi.org/10.1039/d0ra02816a

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Shintre, S.A., Ramjugernath, D., Islam, M.S., Mopuri, R., Mocktar, C., and Koorbanally, N.A., Med. Chem. Res., 2017, vol. 26, pp. 2141–2151. https://doi.org/10.1007/s00044-017-1922-x

    CAS  Article  Google Scholar 

  78. Chemboli, R., Kapavarapu, R., Deepti, K., Prasad, K.R.S., Reddy, A.G., Kumar, A.V.D.N., Rao, M.V.B., and Pal, M., J. Mol. Struct., 2021, vol. 1230, article ID 129868. https://doi.org/10.1016/j.molstruc.2020.129868

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Tseng, C.H., Han, C.R., and Tang, K.W., Int. J. Mol. Sci., 2019, vol. 20, p. 4786. https://doi.org/10.3390/ijms20194786

    CAS  Article  PubMed Central  Google Scholar 

  80. Le Douaron, G., Schmidt, F., Amar, M., Kadar, H., Debortoli, L., Latini, A., Séon-Méniel, B., Ferrié, L., Michel, P.P., Touboul, D., Brunelle, A., Raisman-Vozari, R., and Figadère, B., Eur. J. Med. Chem., 2015, vol. 89, pp. 467–479. https://doi.org/10.1016/j.ejmech.2014.10.067

    CAS  Article  PubMed  Google Scholar 

  81. Mahesh, R., Devadoss, T., Pandey, D.K., and Bhatt, S., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 1253–1256. https://doi.org/10.1016/j.bmcl.2010.12.064

    CAS  Article  PubMed  Google Scholar 

  82. Abid, M. and Azam, A., Bioorg. Med. Chem. Lett., 2006, vol. 16, pp. 2812–2816. https://doi.org/10.1016/j.bmcl.2006.01.116

    CAS  Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is thankful to the staff and management of C.L. Baid Metha college of pharmacy for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bala Aakash.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

HUMAN AND ANIMAL RIGHTS

No animals/humans were used for studies that are base on this research.

AVAILABILITY OF DATA AND MATERIALS

The authors confirm that the data supporting the findings of this study are available within the article.

Additional information

Abbreviations: RNA, ribonucleic acid; DNA, deoxyribonucleic acid; BET, bromodomain and extra-terminal; t-BOC, tertiary butyl carbamate; ADMET, absorption distribution metabolism excretion and toxicity; IC50, inhibition constant; PDB, protein data bank; CNS, central nervous system; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; TPZ, tirapazamine; MIC, minimum inhibitory concentration; 3D-QSAR, three-dimensional quantitative structure–activity relationship; PTZ, pentylenetetrazol; PAMPA, parallel artificial membrane permeation assay; BBB, blood–brain barrier; MABA assay, microplate alamar blue assay; SDRMIC, single drug-resistant minimum inhibitory concentration; Mtb, Mycobacterium tuberculosis; UPLC-MS, ultra-pressure liquid chromatography-mass spectroscopy; EEFs, exo-erythrocytic forms; DMF, dimethylformamide; HIV-RT, human immunodeficiency virus reverse transcriptase; CPE, cytopathogenic effect; DPPH assay, 2,2-diphenyl-1-picrylhydrazyl assay; FRET, fluorescence resonance energy transfer; PPARγ, peroxisome proliferator-activated receptor gamma; SURs, sulfonylurea receptor; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; COX-2, cyclooxygenase-2; HPLC-MS, high-performance liquid chromatography-mass spectroscopy; MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight; ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid; SAR, structure–activity relationship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bala Aakash, V., Ramalakshmi, N., Bhuvaneswari, S. et al. Comprehensive Review on Versatile Pharmacology of Quinoxaline Derivative. Russ J Bioorg Chem 48, 657–677 (2022). https://doi.org/10.1134/S1068162022040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022040069

Keywords:

  • quinoxaline
  • biological activity
  • IC50 value
  • anti-microbial
  • anti-cancer
  • anti-malarial