Abstract
Quinoxaline is a nitrogen-containing heterocyclic compound having many pharmaceutical and industrial purposes. It can be synthesized by adopting green chemistry principles. The quinoxaline containing drugs such as Olaquindox, Echinomycin, Atinoleutin, Levomycin, and Carbadox are currently used as an antibiotic in the market. The objective of this review is to enumerate the various multifunctional property of the quinoxaline moiety. This present review contains the newer quinoxaline derivatives against many targets, receptors, or microorganisms. This work comprises the study on quinoxaline as a core unit from the year 2002 to 2020. All the collected literature has been combined and highlighted for the effective use of that particular derivative. Various potent quinoxaline compounds have been analyzed in the literature. About 50 papers have been reviewed for the novel quinoxaline compounds, the potent derivatives have been reported, and structures were given. The critical role of the quinoxaline on the various heterocyclic moieties has been given more attention in this review. This review paves the way as a source of references for the further development of drug discovery in the wide spectrum of its biological importance.
This is a preview of subscription content,
to check access.




















































REFERENCES
Körner, G., Ber. Dtsch. Chem. Ges., 1884, vol. 17, pp. 572–573.
Hinsberg, O., Ber. Der Dtsch. Chem. Ges., 1884, vol. 17, pp. 318–323. https://doi.org/10.1002/cber.18840170193
Brown, D.J., Chemistry of Heterocyclic Compounds: A Series of Monographs. vol. 52, The Pyrimidines, Hoboken, NJ, Wiley-Interscience, 1950.
Haworth, R.D. and Robinson, S., J. Chem. Soc., 1948, pp. 777–782.
Crowther, A.F., Curd, F.H.S., Davey, D.G., and Stacey, G.J., J. Chem. Soc., 1949, pp. 1260–1271. https://doi.org/10.1039/JR9490001260
Dandegaonker, H. and Mesta, C.K., J. Med. Chem., 1965, vol. 8, pp. 884–886. https://doi.org/10.1021/jm00330a043
Harmenberg, J., Wahren, B., Bergman, J., Akerfeldt, S., and Lundblad, L., Antimicrob. Agents Chemother., 1988, vol. 32, pp. 1720–1724. https://doi.org/10.1128/AAC.32.11.1720
Kleim, J.P., Bender, R., Billhardt, U.M., Meichsner, C., Riess, G., Rosner, M., Winkler, I., and Paessens, A., Antimicrob. Agents Chemother., 1993, vol. 37, pp. 1659–1664. https://doi.org/10.1128/AAC.37.8.1659
Romváry, A. and Simon, F., Acta Vet. Hung., 1992, vol. 40, pp. 99–106.
Sato, M., Nakazawa, T., Tsunematsu, Y., Hotta, K., and Watanabe, K., Curr. Opin. Chem. Biol., 2013, vol. 17, pp. 537–545. https://doi.org/10.1016/j.cbpa.2013.06.022
Carter, H.E., Schaffner, C.P., and Gottlieb, D., Arch. Biochem. Biophys., 1954, vol. 53, pp. 282–293. https://doi.org/10.1016/0003-9861(54)90251-9
Christie, A.B., Mitchell, A.A.B., and Walker, R.S., Scott. Med. J., 1966, vol. 11, pp. 176–181. https://doi.org/10.1177/003693306601100505
Ponnurangam, S., Dandawate, P.R., Dhar, A., Tawfik, O.W., Parab, R.R., Mishra, P.D., Ranadive, P., Sharma, R., Mahajan, G., Umar, S., Weir, S.J., Sugumar, A., Jensen, R.A., Padhye, S.B., Balakrishnan, A., Anant, S., and Subramaniam, D., Oncotarget, 2016, vol. 7, pp. 3217–3232. https://doi.org/10.18632/oncotarget.6560
Jordan, C.J. and Xi, Z.X., Expert Opin. Drug Discov., 2018, vol. 13, pp. 671–683. https://doi.org/10.1080/17460441.2018.1458090
Rahman, M.Q., Ramaesh, K., and Montgomery, D.M., Expert Opin. Drug Saf., 2010, vol. 9, pp. 483–491. https://doi.org/10.1517/14740331003709736
Oh, D.J., Chen, J.L., Vajaranant, T.S., and Dikopf, M.S., Expert Opin. Pharmacother., 2019, vol. 20, no. 1, pp. 115–122. https://doi.org/10.1080/14656566.2018.1544241
Lusthaus, J.A. and Goldberg, I., Expert Opin. Drug Saf., 2017, vol. 16, pp. 1071–1078. https://doi.org/10.1080/14740338.2017.1346083
Lee, D.A., Clin. Ther., 2000, vol. 22, pp. 53–65. https://doi.org/10.1016/S0149-2918(00)87977-1
Kim, J.H., Kim, J.H., Lee, G.E., Kim, S.W., and Chung, I.K., Biochem. J., 2003, vol. 373, pp. 523–529. https://doi.org/10.1042/BJ20030363
Zhu, B., Zhang, T., Jiang, Q., Li, Y., Fu, Y., Dai, J., Li, G., Qi, Q., and Cheng, Y., Chem. Commun., 2018, vol. 54, pp. 11558–11561. https://doi.org/10.1039/c8cc06897f
Singh, S.K., Saibaba, V., Ravikumar, V., Rudrawar, S.V., Daga, P., Rao, C.S., Akhila, V., Hegde, P., and Rao, Y.K., Bioorg. Med. Chem., 2004, vol. 12, pp. 1881–1893. https://doi.org/10.1016/j.bmc.2004.01.033
Jacobsen, E.J., Stelzer, L.S., Belonga, K.L., Carter, D.B., Bin, Im.W., Sethy, V.H., Tang, A.H., Von Voigtlander, P.F., and Petke, J.D., J. Med. Chem., 1996, vol. 39, pp. 3820–3836. https://doi.org/10.1021/jm960070+
Suter, W., Rosselet, A., and Knuesel, F., Antimicrob. Agents Chemother., 1978, vol. 13, pp. 770–783. https://doi.org/10.1128/AAC.13.5.770
Ortega, M.Á., Sainz, Y., Montoya, M.E., Jaso, A., Zarranz, B., Aldana, I., and Monge, A., Arzneimittel-Forschung/Drug Res., 2002, vol. 52, pp. 113–119. https://doi.org/10.1055/s-0031-1299866
Tapia, R.A., Prieto, Y., Pautet, F., Walchshofer, N., Fillion, H., Fenet, B., and Sarciron, M.E., Bioorg. Med. Chem., 2003, vol. 11, pp. 3407–3412. https://doi.org/10.1016/S0968-0896(03)00311-0
Monge, A., Palop, J.A., Urbasos, I., and Fernández-Alvarez, E., J. Heterocycl. Chem., 1989, vol. 26, pp. 1623–1626. https://doi.org/10.1002/jhet.5570260621
Burguete, A., Pontiki, E., Hadjipavlou-Litina, D., Ancizu, S., Villar, R., Solano, B., Moreno, E., Torres, E., Pérez, S., Aldana, I., and Monge, A., Chem. Biol. Drug Des., 2011, vol. 77, pp. 255–267. https://doi.org/10.1111/j.1747-0285.2011.01076.x
Puratchikody, A., Natarajan, R., Jayapal, M., and Doble, M., Chem. Biol. Drug Des., 2011, vol. 78, pp. 988–998. https://doi.org/10.1111/j.1747-0285.2011.01246.x
Puratchikody, A., Natarajan, R., Doble, M., Hema Iswarya, S., and Vijayabharathi, R., Med. Chem. (LA), 2013, vol. 9, pp. 275–286. https://doi.org/10.2174/1573406411309020010
Natarajan, R., Puratchikody, A., Muralidharan, V., Doble, M., and Subramani, A., Curr. Comput. Aided. Drug Des., 2018, vol. 15, pp. 182–192. https://doi.org/10.2174/1573409914666181011145922
Natarajan, R., Subramani, A., Kesavan, S.K., and Selvaraj, D., J. Pharm. Res., 2013, vol. 1, pp. 775–780.
Puratchikody, A., Doble, M., and Ramalakshmi, N., Rasayan J. Chem., 2011, vol. 4, pp. 636–639.
Ali, I., Lee, J., Go, A., Choi, G., and Lee, K., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 4606–4613. https://doi.org/10.1016/j.bmcl.2017.09.025
Eissa, I.H., El-Naggar, A.M., El-Sattar, N.E.A.A., and Youssef, A.S.A., Anticancer Agents Med. Chem., 2018, vol. 18, pp. 195–209. https://doi.org/10.2174/1871520617666170710182405
Gu, W., Wang, S., Jin, X., Zhang, Y., Hua, D., Miao, T., Tao, X., and Wang, S., Molecules, 2017, vol. 22, p. 1154. https://doi.org/10.3390/molecules22071154
Abbas, H.A.S., Al-Marhabi, A.R., Eissa, S.I., and Ammar, Y.A., Bioorg. Med. Chem., 2015, vol. 23, pp. 6560–6572. https://doi.org/10.1016/j.bmc.2015.09.023
Ghanbarimasir, Z., Bekhradnia, A., Morteza-Semnani, K., Rafiei, A., Razzaghi-Asl, N., and Kardan, M., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2018, vol. 194, pp. 21–35.
Scherbakov, A.M., Borunov, A.M., Buravchenko, G.I., Andreeva, O.E., Kudryavtsev, I.A., Dezhenkova, L.G., and Shchekotikhin, A.E., Cancer Invest., 2018, vol. 36, pp. 199–209. https://doi.org/10.1080/07357907.2018.1453072
El Newahie, A.M.S., Nissan, Y.M., Ismail, N.S.M., Abou El Ella, D.A., Khojah, S.M., and Abouzid, K.A.M., Molecules, 2019, vol. 24, p. 1175. https://doi.org/10.3390/molecules24061175
Guillon, J., Savrimoutou, S., Rubio, S., Moreau, S., Pinaud, N., Marchivie, M., and Desplat, V., Molbank, 2020. https://doi.org/10.3390/M1113
El-Atawy, M.A., Hamed, E.A., Alhadi, M., and Omar, A.Z., Molecules, 2019, vol. 24, p. 4198. https://doi.org/10.3390/molecules24224198
Saravanan, G., Selvam, T.P., Alagarsamy, V., Kunjiappan, S., Joshi, S.D., Indhumathy, M., and Kumar, P.D., Drug Res. (Stuttg)., 2018, vol. 68, pp. 250–262. https://doi.org/10.1055/s-0043-120198
Zhang, H., Zhang, J., Qu, W., Xie, S., Huang, L., Chen, D., Tao, Y., Liu, Z., Pan, Y., and Yuan, Z., Front. Chem., 2020, vol. 8, p. 598. https://doi.org/10.3389/fchem.2020.00598
Ammar, Y.A., Farag, A.A., Ali, A.M., Ragab, A., Askar, A.A., Elsisi, D.M., and Belal, A., Bioorg. Chem., 2020, vol. 104, article ID 104164. https://doi.org/10.1016/j.bioorg.2020.104164
Zhang, T.X., Zhang, W.X., Zhu, H.J., Liang, L., Cheng, Z.P., and Luo, M.M., Asian J. Chem., 2014, vol. 26, pp. 2344–2350. https://doi.org/10.14233/ajchem.2014.15949
Goyal Rakesh, Sharma Mukesh, and Ahuja Dharmendra J.A., J. Drug Deliv. Ther., 2019, vol. 9, no. 4A, pp. 921–927. https://doi.org/10.22270/jddt.v9i4.3016
Ingle, R. and Shailesh, W., Int. J. Pharm. Chem., 2014.
Xu, H. and Fan, L.L., Eur. J. Med. Chem., 2011, vol. 46, pp. 1919–1925. https://doi.org/10.1016/j.ejmech.2011.02.035
Soliman, D.H., Int. J. Org. Chem., 2013, vol. 03, pp. 65–72. https://doi.org/10.4236/ijoc.2013.33a007
Henen, M.A., El Bialy, S.A.A., Goda, F.E., Nasr, M.N.A., and Eisa, H.M., Med. Chem. Res., 2012, vol. 21, pp. 2368–2378. https://doi.org/10.1007/s00044-011-9753-7
Elhelby, A.A., Ayyad, R.R., and Zayed, M.F., Arzneimittel-Forschung/Drug Res., 2011, vol. 61, pp. 379–381. https://doi.org/10.1055/s-0031-1296214
Elhelby, A.A., Ayyad, R.R., and Zayed, M.F., Arzneimittel-Forschung/Drug Res., 2011, vol. 61, pp. 379–381. https://doi.org/10.1055/s-0031-1296214
Wagle, S., Adhikari, A.V., and Kumari, N.S., Eur. J. Med. Chem., 2009, vol. 44, pp. 1135–1143. https://doi.org/10.1016/j.ejmech.2008.06.006
Wang, T., Tang, Y., Yang, Y., An, Q., Sang, Z., Yang, T., Liu, P., Zhang, T., Deng, Y., and Luo, Y., Bioorg. Med. Chem. Lett., 2018, vol. 28, pp. 2084–2090. https://doi.org/10.1016/j.bmcl.2018.04.043
Jaso, A., Zarranz, B., Aldana, I., and Monge, A., Eur. J. Med. Chem., 2003, vol. 38, pp. 791–800. https://doi.org/10.1016/S0223-5234(03)00137-5
Palos, I., Luna-Herrera, J., Lara-Ramírez, E.E., Loera-Piedra, A., Fernández-Ramírez, E., Guadalupe Aguilera-Arreola, M., Paz-González, A.D., Monge, A., Wan, B., Franzblau, S., and Rivera, G., Molecules, 2018, vol. 23, p. 1453. https://doi.org/10.3390/molecules23061453
Santivañez-Veliz, M., Pérez-Silanes, S., Torres, E., and Moreno-Viguri, E., Bioor. Med. Chem. Lett., 2016, vol. 26, pp. 2188–2193. https://doi.org/10.1016/j.bmcl.2016.03.066
Waring, M.J., Ben-Hadda, T., Kotchevar, A.T., Ramdani, A., Touzani, R., Elkadiri, S., Hakkou, A., Bouakka, M., and Ellis, T., Molecules, 2002, vol. 7, pp. 641–656. https://doi.org/10.3390/70800641
Zhai, Q., Rahardjo, H., Satyanaga, A., Zhu, Y., Dai, G., and Zhao, X., Eng. Geol., 2021, vol. 285, article ID 106034. https://doi.org/10.1016/j.enggeo.2021.106034
Gil, A., Pabón, A., Galiano, S., Burguete, A., Pérez-Silanes, S., Deharo, E., Monge, A., and Aldana, I., Molecules, 2014, vol. 19, pp. 2166–2180. https://doi.org/10.3390/molecules19022166
Barea, C., Pabón, A., Pérez-Silanes, S., Galiano, S., Gonzalez, G., Monge, A., Deharo, E., and Aldana, I., Molecules, 2013, vol. 18, pp. 4718–4727. https://doi.org/10.3390/molecules18044718
Vicente, E., Charnaud, S., Bongard, E., Villar, R., Burguete, A., Solano, B., Ancizu, S., Pérez-Silanes, S., Aldana, I., and Vivas, L., Molecules, 2008, vol. 13, pp. 69–77
Quiliano, M., Pabón, A., Ramirez-Calderon, G., Barea, C., Deharo, E., Galiano, S., and Aldana, I., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 1820–1825. https://doi.org/10.1016/j.bmcl.2017.02.049
Primas, N., Suzanne, P., Verhaeghe, P., Hutter, S., Kieffer, C., Laget, M., Cohen, A., Broggi, J., Lancelot, J.C., Lesnard, A., Dallemagne, P., Rathelot, P., Rault, S., Vanelle, P., and Azas, N., Eur. J. Med. Chem., 2014, vol. 83, pp. 26–35. https://doi.org/10.1016/j.ejmech.2014.06.014
Barea, C., Pabón, A., Galiano, S., Pérez-Silanes, S., Gonzalez, G., Deyssard, C., Monge, A., Deharo, E., and Aldana, I., Molecules, 2012, vol. 17, pp. 9451–9461. https://doi.org/10.3390/molecules17089451
Rashid, H. ur, Xu, Y., Muhammad, Y., Wang, L., and Jiang, J., Eur. J. Med. Chem., 2019, vol. 161, pp. 205–238. https://doi.org/10.1016/j.ejmech.2018.10.037
Cogo, J., Kaplum, V., Sangi, D.P., Ueda-Nakamura, T., Correa, A.G., and Nakamura, C.V., Eur. J. Med. Chem., 2015, vol. 90, pp. 107–123. https://doi.org/10.1016/j.ejmech.2014.11.018
Patel, S.B., Patel, B.D., Pannecouque, C., and Bhatt, H.G., Eur. J. Med. Chem., 2016, vol. 117, pp. 230–240. https://doi.org/10.1016/j.ejmech.2016.04.019
Fabian, L., Taverna Porro, M., Gómez, N., Salvatori, M., Turk, G., Estrin, D., and Moglioni, A., Eur. J. Med. Chem., 2020, vol. 188, article ID 111987. https://doi.org/10.1016/j.ejmech.2019.111987
Fan, L.L., Huang, N., Yang, R.G., He, S.Z., Yang, L.M., Xu, H., and Zheng, Y.T., Lett. Drug Des. Discov., 2012, vol. 9, pp. 44–47. https://doi.org/10.2174/157018012798193026
Ingle, R.G. and Marathe, R.P., Int. J. Pharm. Res. Allied Sci., 2012, vol. 1, pp. 46–51.
Hossain, M.M., Hossain, M.M., Muhib, M.H., Mia, M.R., Kumar, S., and Wadud, S.A., Bangladesh Med. Res. Counc. Bull., 2012, vol. 38, pp. 47–50. https://doi.org/10.3329/bmrcb.v38i2.12880
Sagar, S.R., Singh, D.P., Das, R.D., Panchal, N.B., Sudarsanam, V., Nivsarkar, M., and Vasu, K.K., Bioorg. Chem., 2019, vol. 89, pp. 102992. https://doi.org/10.1016/j.bioorg.2019.102992
Kanhed, A.M., Patel, D.V., Patel, N.R., Sinha, A., Thakor, P.S., Patel, K.B., Prajapati, N.K., Patel, K.V., and Yadav, M.R., J. Biomol. Struct. Dyn., 2020, pp. 1–18. https://doi.org/10.1080/07391102.2020.1840441
Mahajan, S., Slathia, N., Nuthakki, V.K., Bharate, S.B., and Kapoor, K.K., RSC Adv., 2020, vol. 10, pp. 15966–15975
Mahajan, S., Slathia, N., Nuthakki, V.K., Bharate, S.B., and Kapoor, K.K., RSC Adv., 2020, vol. 10, pp. 15966–15975. https://doi.org/10.1039/d0ra02816a
Shintre, S.A., Ramjugernath, D., Islam, M.S., Mopuri, R., Mocktar, C., and Koorbanally, N.A., Med. Chem. Res., 2017, vol. 26, pp. 2141–2151. https://doi.org/10.1007/s00044-017-1922-x
Chemboli, R., Kapavarapu, R., Deepti, K., Prasad, K.R.S., Reddy, A.G., Kumar, A.V.D.N., Rao, M.V.B., and Pal, M., J. Mol. Struct., 2021, vol. 1230, article ID 129868. https://doi.org/10.1016/j.molstruc.2020.129868
Tseng, C.H., Han, C.R., and Tang, K.W., Int. J. Mol. Sci., 2019, vol. 20, p. 4786. https://doi.org/10.3390/ijms20194786
Le Douaron, G., Schmidt, F., Amar, M., Kadar, H., Debortoli, L., Latini, A., Séon-Méniel, B., Ferrié, L., Michel, P.P., Touboul, D., Brunelle, A., Raisman-Vozari, R., and Figadère, B., Eur. J. Med. Chem., 2015, vol. 89, pp. 467–479. https://doi.org/10.1016/j.ejmech.2014.10.067
Mahesh, R., Devadoss, T., Pandey, D.K., and Bhatt, S., Bioorg. Med. Chem. Lett., 2011, vol. 21, pp. 1253–1256. https://doi.org/10.1016/j.bmcl.2010.12.064
Abid, M. and Azam, A., Bioorg. Med. Chem. Lett., 2006, vol. 16, pp. 2812–2816. https://doi.org/10.1016/j.bmcl.2006.01.116
ACKNOWLEDGMENTS
The author is thankful to the staff and management of C.L. Baid Metha college of pharmacy for their support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
HUMAN AND ANIMAL RIGHTS
No animals/humans were used for studies that are base on this research.
AVAILABILITY OF DATA AND MATERIALS
The authors confirm that the data supporting the findings of this study are available within the article.
Additional information
Abbreviations: RNA, ribonucleic acid; DNA, deoxyribonucleic acid; BET, bromodomain and extra-terminal; t-BOC, tertiary butyl carbamate; ADMET, absorption distribution metabolism excretion and toxicity; IC50, inhibition constant; PDB, protein data bank; CNS, central nervous system; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; TPZ, tirapazamine; MIC, minimum inhibitory concentration; 3D-QSAR, three-dimensional quantitative structure–activity relationship; PTZ, pentylenetetrazol; PAMPA, parallel artificial membrane permeation assay; BBB, blood–brain barrier; MABA assay, microplate alamar blue assay; SDRMIC, single drug-resistant minimum inhibitory concentration; Mtb, Mycobacterium tuberculosis; UPLC-MS, ultra-pressure liquid chromatography-mass spectroscopy; EEFs, exo-erythrocytic forms; DMF, dimethylformamide; HIV-RT, human immunodeficiency virus reverse transcriptase; CPE, cytopathogenic effect; DPPH assay, 2,2-diphenyl-1-picrylhydrazyl assay; FRET, fluorescence resonance energy transfer; PPARγ, peroxisome proliferator-activated receptor gamma; SURs, sulfonylurea receptor; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; COX-2, cyclooxygenase-2; HPLC-MS, high-performance liquid chromatography-mass spectroscopy; MALDI-TOF, matrix-assisted laser desorption/ionization-time of flight; ABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid; SAR, structure–activity relationship.
Rights and permissions
About this article
Cite this article
Bala Aakash, V., Ramalakshmi, N., Bhuvaneswari, S. et al. Comprehensive Review on Versatile Pharmacology of Quinoxaline Derivative. Russ J Bioorg Chem 48, 657–677 (2022). https://doi.org/10.1134/S1068162022040069
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1068162022040069