Skip to main content
Log in

3D-Pharmacophore Modeling, Molecular Docking, and Virtual Screening for Discovery of Novel CDK4/6 Selective Inhibitors

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Structure-based pharmacophore mapping, drug-likeness and ADMET profiles were used as tools in our virtual screening process, in addition to molecular docking studies that were used to find novel CDK4/6 inhibitors with different heterocyclic scaffolds, having appropriate physicochemical parameters and non toxic. Aim of this work is to search for new promising CDK4/6 inhibitors, that have a great potential to be approved as clinically useful drugs in cancer therapy. Six promising hits were retrieved after applying virtual screening filters, these hits were subjected to molecular docking studies and were compared with the approved CDK4/6 inhibitor drug (palbociclib). Finally, we can conclude that they have a great potential to target CDK4/6 in a closely similar manner as palbociclib, in addition to their predicted good ADMET properties, they can be considered as novel hopeful leads for CDK4/6 inhibition and deserve further clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Malumbres, M., Genome Biol., 2014, vol. 15, pp. 1–10. http://genomebiology.com/2014/15/6/122.

    Article  Google Scholar 

  2. Harper, J. and Adams, P., Chem. Rev., 2001, vol. 101, pp. 2511–2526.

    Article  CAS  Google Scholar 

  3. Ding, L., Cao, J., Lin, W., Chen, H., Xiong, X., Ao H., Yu M., Lin J., Cui Q. Int. J. Mol. Sci. 2020, vol. 21, p. 1960.  https://doi.org/10.3390/ijms21061960

    Article  CAS  PubMed Central  Google Scholar 

  4. Sourav, K., Gaurav, J., Anjana, M., and Raj, K., Eur. J. Med. Chem., 2017, vol. 142, pp. 424–458.

    Article  Google Scholar 

  5. Neil, J. and Geoffrey, I.S., Expert Opin. Ther. Targets, 2010, vol. 14, pp. 1199–1212.

    Article  Google Scholar 

  6. Aggarwal, P., Vaites, L.P., Kim, J.K., Mellert, H., Gurung, B., Nakagawa, H., Herlyn, M., Hua, X., Rustgi, A.K., and McMahon, S.B., Cancer Cell, 2010, vol. 18, pp. 329–340.

    Article  CAS  Google Scholar 

  7. Ugale, V.G. and Bari, S.B., SAR QSAR Environ. Res., 2016, vol. 27, pp. 125–145.

    Article  CAS  Google Scholar 

  8. Meetei, P.A., Rathore, R.S., Prabhu, N.P., and Vindal, V., Springer Plus, 2016, vol. 5, p. 965.

    Article  Google Scholar 

  9. Tuccinardi, T., Poli, G., Corchia, I., Granchi, C., Lapillo, M., Macchia, M., Minutolo, F., Ortore, G., and Martinelli, A., Mol. Inform., 2016, vol. 35, pp. 434–439.

    Article  CAS  Google Scholar 

  10. Cho, Y.S., Angove, H., Brain, C., Chen, C.H., Cheng, H., Cheng, R., Chopra, R., Chung, K., Congreve, M., Dagostin, C., Davis, D.J., Feltell, R., Giraldes, J., Hiscock, S.D., Kim, S., Kovats, S., Lagu, B., Lewry, K., Loo, A., Lu, Y., Luzzio, M., Maniara, W., McMenamin, R., Mortenson, P.N., Benning, R., O’Reilly, M., Rees, D.C., Shen, J., Smith, T., Wang, Y., Williams, G., Woolford, A.J., Wrona, W., Xu, M., Yang, F., and Howard, S., ACS Med. Chem. Lett., 2012, vol. 17, pp. 445–449.

    Article  Google Scholar 

  11. Reddy, M.V.,  Akula, B., Cosenza, S.C.,  Athuluridivakar, S., Mallireddigari, M.R.,  Pallela, V.R.,  Billa, V.K.,  Subbaiah, D.R., Bharathi, E.V., Vasquez-Del Carpio, R., Padgaonkar, A., Baker, S.J., and Reddy, E.P., J. Med. Chem., 2014, vol. 13, pp. 578–599.

    Article  Google Scholar 

  12. Tadesse, S., Yu, M., Mekonnen, L.B., Lam, F., Islam, S., Tomusange, K., Rahaman, M.H., Noll, B., Basnet, S.K., Teo, T., Albrecht, H., Milne, R., and Wang, S., J. Med. Chem., 2017, vol. 9, pp. 1892–1915.

    Article  Google Scholar 

  13. Tadesse, S., Yu, M., Kumarasiri, M., Le, B.T., and Wang, S., Cell Cycle, 2015, vol. 14, pp 3220–3230.

    Article  CAS  Google Scholar 

  14. Hirai, H., Shimomura, T., Kobayashi, M., Eguchi, T., Taniguchi, E., Fukasawa, K., Machida, T., Oki, H., Arai, T., Ichikawa, K., Hasako, S., Haze, K., Kodera, T., Kawanishi, N., Takahashi-Suziki, I., Nakatsuru, Y., Kotani, H., and Iwasawa, Y., Cell Cycle, 2010, vol. 15, pp.1590–1600.

    Article  Google Scholar 

  15. Fry, D., Bedford, D.C., Harvey, P.H., Fritsch, A., Keller, P.R., Wu, Z., Dobrusin, E., Leopold, W.R., Fattaey, A., and Garrett, M.D., J. Biol. Chem., 2001, vol 18, pp. 16617–16623.

    Article  Google Scholar 

  16. Molecular Operating Environment (MOE), C.C.G.I., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2013. https://www.chemcomp.com/ MOE-Molecular_Operating_Environment.htm. Accessed January 4, 2018.

  17. Sanders, M.P., Barbosa, A.J., Zarzycka, B., Nicolaes, G.A., Klomp, J.P., de Vlieg, J., and del Rio, A., J. Chem. Inf. Model., 2012, vol. 52, pp. 1607–1620.

    Article  CAS  Google Scholar 

  18. https://www.ebi.ac.uk/chembl/.

  19. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Deliv. Rev., 2001, vol. 46, pp. 3–26.

    Article  CAS  Google Scholar 

  20. Feixiong, C., Weihua, L., Yadi, Z., Jie, S., Zengrui, W., Guixia, L., Philip, W.L., and Yun, T., J. Chem. Inf. Model., 2012, vol. 52, pp. 3099–3105.

    Article  Google Scholar 

  21. https://www.rcsb.org/structure/2w9z.

  22. https://www.rcsb.org/structure/5L2I.

  23. Simon-Szabó, L., Kokas, M., Greff, Z., Boros, S., Bánhegyi, P., Zsákai, L., Szántai-Kis, C., Vantus, T., Mandl, J., Bánhegyi, G., Vályi-Nagy, I., Örfi, L., Ullrich, A., Csala, M., and Kéri, G., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 424.

    Article  Google Scholar 

  24. Kraker, A.J., Hartl, B.G., Amar, A.M., Barvian, M.R., Showalter, H.D., and Moore, C.W., Biochem. Pharmacol., 2000, vol. 60, p. 885.

    Article  CAS  Google Scholar 

  25. Chen, L., Yap, J.L., Yoshioka, M., Lanning, M.E., Fountain, R.N., Raje, M., Scheenstra, J.A., Strovel, J.W., and Fletcher, S., ACS Med. Chem. Lett., 2015, vol. 6, p. 764.

    Article  CAS  Google Scholar 

  26. Tan, L., Akahane, K., McNally, R., Reyskens, K.M., Ficarro, S.B., Liu, S., Herter-Sprie, G.S., Koyama, S., Pattison, M.J., Labella, K., Johannessen, L., Akbay, E.A., Wong, K.K., Frank, D.A., Marto, J.A., Look, T.A., Arthur, J.S., Eck, M.J., and Gray, N.S., J. Med. Chem., 2015, vol. 58, p. 16:6589.

  27. https://pubchem.ncbi.nlm.nih.gov/.

Download references

ACKNOWLEDGMENT

Appreciated thanks to Taif University Researchers Supporting Project number (TURSP-2020/35), Taif University, Taif, Saudi Arabia.

Funding

This work was financially supported by Taif University Researchers Supporting Project number (TURSP-2020/35), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany Belal.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

No experiments have been conducted on humans or animals in this research work.

Conflict of Interests

The authors declare that there is no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belal, A. 3D-Pharmacophore Modeling, Molecular Docking, and Virtual Screening for Discovery of Novel CDK4/6 Selective Inhibitors. Russ J Bioorg Chem 47, 317–333 (2021). https://doi.org/10.1134/S1068162021330013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021330013

Keywords:

Navigation