Skip to main content
Log in

Simulation of the Level of Prostaglandins in Open Systems under the Action of Nonsteroidal Anti-Inflammatory Drugs

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Modeling the flow and level of prostaglandins in open systems under the action of prostaglandin H synthase (PGHS) inhibitors (nonsteroidal anti-inflammatory drugs, NSAIDs) was carried out. These open systems included a steady PGHS input, fast inactivation of PGHS during the reaction, degradation of all PGHS forms, conversion of prostaglandin (PG) to biologically inactive substances, and various types of delivery of inhibitors and substrate (arachidonic acid, AA). A slow reversible inhibitor of PGHS (indomethacin) and a slow irreversible inhibitor of PGHS (aspirin) were considered as inhibitors. The explicit analytical expressions for flows and concentrations in steady state and transient mode were obtained. In steady state the dependences of flow and level of PG on the concentration of AA were described by the Michaelis–Menten-type equation. The values of the maximum flows, maximum levels, and Michaelis constant in these equations are inversely proportional to the constant of inactivation of the enzyme during the reaction. In the closed systems, slow PGHS inhibitors are manifested as non-competitive with respect to AA, but in open systems, their behavior is fully competitive with respect to AA, so the presence of inhibitor increases the range of changes of PG level under the change of AA concentration. The reversible inhibitor (indomethacin), in contrast to the irreversible inhibitor (aspirin), in transient mode has been shown to manifest itself as the repository for the active enzyme because of the formation of enzyme-inhibitory complexes. The system disturbance under the rapid increase of indomethacin concentration leads to the biphasic change of the PG level: after the initial rapid decrease it increases gradually to the new steady state. In the presence of indomethacin, the system disturbance under the rapid increase of AA concentration leads to the release of the enzyme from enzyme-inhibitory complexes, and the PG level for a certain period significantly increases compared with the absence of inhibitor. The results of modeling of the regulation of the level of prostaglandins in different states of the open systems undoubtedly need to be used in the study of NSAIDs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ricciotti, E. and Fitzgerald, G.A., Arterioscler. Thromb. Vasc. Biol., 2011, vol. 31, pp. 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B., Proc. Natl. Acad. Sci. U. S. A., 1974, vol. 71, pp. 345–349. https://doi.org/10.1073/pnas.71.2.345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, G., Vuletich, J.L., Kulmacz, R.J., Osawa, Y., and Tsai, A.L., J. Biol. Chem., 2001, vol. 276, pp. 19879–19888. https://doi.org/10.1074/jbc.M100628200

    Article  CAS  PubMed  Google Scholar 

  4. Hamberg, M. and Samuelsson, B., Proc. Natl. Acad. Sci. U. S. A., 1973, vol. 70, pp. 899–903. https://doi.org/10.1073/pnas.70.3.899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samuelsson, B., Goldyne, M., Granstrom, E., Hamberg, M., Hammarstrom, S., and Malmsten, C., Annu. Rev. Biochem., 1978, vol. 47, pp. 997–1029. https://doi.org/10.1146/annurev.bi.47.070178.005025

    Article  CAS  PubMed  Google Scholar 

  6. Helliwell, R.J., Adams, L.F., and Mitchell, M.D., Prostaglandins Leukot. Essent. Fatty Acids, 2004, vol. 70, pp. 101–113. https://doi.org/10.1016/j.plefa.2003.04.002

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe, K., Yoshida, R., Shimizu, T., and Hayaishi, O., J. Biol. Chem., 1985, vol. 260, pp. 7035–7041.

    Article  CAS  Google Scholar 

  8. Vrzheshch, P.V., Batanova, E.A., Mevkh, A.T., Varfolomeev, S.D., Gazaryan, I.G., and Thorneley, R.N., Biochem. J., 2003, vol. 372, pp. 713–724. https://doi.org/10.1042/BJ20030043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, W.L. and Lands, W.E., Biochemistry, 1972, vol. 11, pp. 3276–3285. https://doi.org/10.1021/bi00767a024

    Article  CAS  PubMed  Google Scholar 

  10. Egan, R.W., Paxton, J., and Kuehl, F.A., J. Biol. Chem., 1976, vol. 251, pp. 7329–7335.

    Article  CAS  Google Scholar 

  11. Mevkh, A.T., Vrzheshch, P.V., Svedas, V.Y.-K., Varfolomeev, S.D., Myagkova, G.I., and Yakusheva, L.A, Bioorg. Khim., 1981, vol. 7, pp. 695–702.

    CAS  Google Scholar 

  12. Vrzheshch, P.V., Tsaplina, L.A., and Sakharova, I.S., Biochemistry (Mosc.), 2007, vol. 72, pp. 828–834. https://doi.org/10.1134/s0006297907080032

    Article  CAS  Google Scholar 

  13. Yokoyama, C. and Tanabe, T., Biochem. Biophys. Res. Commun., 1989, vol. 165, pp. 888–894. https://doi.org/10.1016/s0006-291x(89)80049-x

    Article  CAS  PubMed  Google Scholar 

  14. Jones, D.A., Carlton, D.P., McIntyre, T.M., Zimmerman, G.A., and Prescott, S.M., J. Biol. Chem., 1993, vol. 268, pp. 9049–9054.

    Article  CAS  Google Scholar 

  15. Vane, J.R., Nat. New Biol., 1971, vol. 231, pp. 232–235. https://doi.org/10.1038/newbio231232a0

    Article  CAS  PubMed  Google Scholar 

  16. Smith, W.L., Meade, E.A., and DeWitt, D.L., Ann. N.Y. Acad. Sci., 1994, vol. 714. https://doi.org/10.1111/j.1749-6632.1994.tb12037.x

  17. Bacchi, S., Palumbo, P., Sponta, A., and Coppolino, M.F., Antiinflamm. Antiallergy Agents Med. Chem., 2012, vol. 11, pp. 52–64. https://doi.org/10.2174/187152312803476255

    Article  CAS  PubMed  Google Scholar 

  18. Gabrielsson, J. and Peletier, L.A., AAPS J., 2018, vol. 20, p. 102. https://doi.org/10.1208/s12248-018-0256-z

    Article  CAS  PubMed  Google Scholar 

  19. Westley, A.M. and Westley, J., J. Biol. Chem., 1996, vol. 271, pp. 5347–5352. https://doi.org/10.1074/jbc.271.10.5347

    Article  CAS  PubMed  Google Scholar 

  20. Liu, W., Poole, E.M., Ulrich, C.M., and Kulmacz, R.J., Pharmacogenet. Genomics, 2012, vol. 22, pp. 525–537. https://doi.org/10.1097/FPC.0b013e32835366f6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schlosser, M., Walschus, U., Klöting, I., and Walther, R., Dis. Markers, 2008, vol. 24, pp. 191–198. https://doi.org/10.1155/2008/961421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pelkonen, O., Turpeinen, M., Hakkola, J., Honkakoski, P., Hukkanen, J., and Raunio, H., Arch. Toxicol., 2008, vol. 82, pp. 667–715. https://doi.org/10.1007/s00204-008-0332-8

    Article  CAS  PubMed  Google Scholar 

  23. Mathieson, T., Franken, H., Kosinski, J., Kurzawa, N., Zinn, N., Sweetman, G., Poeckel, D., Ratnu, V.S., Schramm, M., Becher, I., Steidel, M., Noh, K.-M., Bergamini, G., Beck, M., Bantscheff, M., and Savitski, M.M., Nat. Commun., 2018, vol. 9, p. 689. https://doi.org/10.1038/s41467-018-03106-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen, L.D., Zuchman, R., Sorokina, O., Müller, A., Dieterich, D.C., Armstrong, J.D., Ziv, T., and Ziv, N.E., PLoS One, 2013, vol. 8. e63191. https://doi.org/10.1371/journal.pone.0063191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fowler, J.S., Volkow, N.D., Logan, J., Wang, G.J., MacGregor, R.R., Schyler, D., Wolf, A.P., Pappas, N., Alexoff, D., and Shea, C., Synapse, 1994, vol. 18, pp. 86–93. https://doi.org/10.1002/syn.890180203

    Article  CAS  PubMed  Google Scholar 

  26. Yang, J., Liao, M., Shou, M., Jamei, M., Yeo, K.R., Tucker, G.T., and Rostami-Hodjegan, A., Curr. Drug Metab., 2008, vol. 9, pp. 384–394. https://doi.org/10.2174/138920008784746382

    Article  CAS  PubMed  Google Scholar 

  27. von Bahr, C., Steiner, E., Koike, Y., and Gabrielsson, J., Clin. Pharmacol. Ther., 1998, vol. 64, pp. 18–26. https://doi.org/10.1016/S0009-9236(98)90018-2

    Article  CAS  PubMed  Google Scholar 

  28. Flower, R.J., Biochem. Soc. Trans., 1978, vol. 6, pp. 713–714. https://doi.org/10.1042/bst0060713a

    Article  CAS  PubMed  Google Scholar 

  29. Brash, A.R., J. Clin. Invest., 2001, vol. 107, pp. 1339–1345. https://doi.org/10.1172/JCI13210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Filimonov, I.S., Berzova, A.P., Barkhatov, V.I., Krivoshey, A.V., Trushkin, N.A., and Vrzheshch, P.V., Biochemistry (Mosc.), 2018, vol. 83, pp. 119–128. https://doi.org/10.1134/S0006297918020049

    Article  CAS  Google Scholar 

  31. Pompeia, C., Lima, T., and Curi, R., Cell Biochem. Funct., 2003, vol. 21, pp. 97–104. https://doi.org/10.1002/cbf.1012

    Article  CAS  PubMed  Google Scholar 

  32. Alván, G., Orme, M., Bertilsson, L., Ekstrand, R., and Palmér, L., Clin. Pharmacol. Ther., 1975, vol. 18, pp. 364–373. https://doi.org/10.1002/cpt1975183364

    Article  PubMed  Google Scholar 

  33. Rosenkranz, B. and Frölich, J.C., Prostaglandins Leukot. Med., 1985, vol. 19, pp. 289–300. https://doi.org/10.1016/0262-1746(85)90142-8

    Article  CAS  PubMed  Google Scholar 

  34. Murakami, M., Nakatani, Y., Atsumi, G.-I., Inoue, K., and Kudo, I., Crit. Rev. Immunol., 2017, vol. 37, pp. 127–195. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.20

    Article  PubMed  Google Scholar 

  35. Ponomareva, O.A., Trushkin, N.A., Filimonov, I.S., Krivoshey, A.V., Barkhatov, V.I., Mitrofanov, S.I., and Vrzheshch, P.V., Biochim. Biophys. Acta, 2016, vol. 1858, pp. 2199–2207. https://doi.org/10.1016/j.bbamem.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  36. Stoscheck, C.M., Methods Enzymol., 1990, vol. 182, pp. 50–68. https://doi.org/10.1016/0076-6879(90)82008-p

    Article  CAS  PubMed  Google Scholar 

  37. Falk, J.E., Porphyrins and Metalloporphyrins. Their General, Physical and Coordination Chemistry, and Laboratory Methods, Amsterdam–London–New York: Elsevier Publ. Comp., 1964, p. 181. https://doi.org/10.1002/jobm.19640040512

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment purchased at the expense of the Development Program of Moscow State University and equipment of the Center for Collective Use of Ultra-High Performance Computing Resources of Lomonosov Moscow State University.

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-04-01150а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Vrzheshch.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The article contains no studies involving animals or humans as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interests.

Additional information

Translated by N. Onishchenko

Abbreviations: NSAID, nonsteroidal anti-inflammatory drugs; AA, arachidonic acid; COX, cyclooxygenase; DEDTC, sodium diethyldithiocarbamate; PG, prostaglandin; PGHS, prostaglandin H synthase.

Corresponding author: phone: +7 (967) 005-07-54.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivoshey, A.V., Efremov, A.A., Matveishina, E.K. et al. Simulation of the Level of Prostaglandins in Open Systems under the Action of Nonsteroidal Anti-Inflammatory Drugs. Russ J Bioorg Chem 47, 1051–1059 (2021). https://doi.org/10.1134/S1068162021050289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021050289

Keywords:

Navigation