Skip to main content
Log in

Vasopressin Receptors in Blood Vessels and Proliferation of Endotheliocytes

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Proliferative effects of vasopressin belong to the least studied field of molecular biochemistry of peptide hormones. At the same time, synthetic preparations of vasopressin are widely used in the treatment of vascular diseases and in oncology. In a number of cases, vasopressin has proliferative effects; however, emerging information about the antiproliferative properties of the hormone is currently being more actively discussed. Any proliferation is accompanied by tissue neovascularization. Two main types of vasopressin receptors are expressed in the blood vessels. In this regard, analysis of how the vasopressin effect works with access to mitogenic and secretory effects in blood vessel cells is topical. The review considers tissue-specific peculiarities of vasopressin receptor expression and recent data concerning the organization of signal transduction of hormonal reception. Attention is focused on smooth muscle cells and platelets expressing V-type receptors and on endotheliocytes expressing V2 vasopressin receptors. The structure of glycopeptides and enzymes playing the role of mediators in noncanonical transduction of the hormonal signal was analyzed in detail. Particular attention was paid to the molecular organization of platelet/endothelial cell adhesion protein (PECAM-1). The integral glycopeptide PECAM-1 performs simultaneously structural and signaling functions, converting the vasoconstrictor effect of V vasopressin receptors into the reaction of other membrane receptors and intracellular enzymes of blood vessels. The cytoplasmic department of PECAM-1 is involved in the inhibition of VEGFR-2 receptor of vascular endothelial growth factor (VEGF), the main stimulator of endotheliocyte proliferation. Intercellular dimers of PECAM-1 activate integrins. The integrin αVβ3 and von Willebrand factor are expressed in endotheliocytes. Multimeric molecules of von Willebrand factor are involved in cooperation between the endothelium and interstitium with local reorganization of the vascular network accompanying the repair of blood vessels in trauma and tumor progression. The von Willebrand factor aggregates the complexes of ανβ3 integrins with other ligands and membrane receptors of endotheliocytes and platelets, fixing the cells to the basement membrane. V vasopressin receptors activate VEGF secretion in platelets and proliferation of myocytes. V2 receptors stimulate exocytosis of Weibel–Palade bodies and secretion of von Willebrand factor in endotheliocytes, inducing chemotaxis of smooth muscle cells and endotheliocytes. Activated ανβ3 integrins physically interact with VEGFR-2 receptors of endotheliocytes and modulate the stimulation of angiogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Acher, R. and Chauvet, J., Front. Neuroendocrinol., 1995, vol. 16, pp. 237–289. https://doi.org/10.1006/frne.1995.1009

    Article  CAS  PubMed  Google Scholar 

  2. Wallis, M., Gen. Comp. Endocrinol., 2012, vol. 179, pp. 313–318. https://doi.org/10.1016/j.ygcen.2012.07.030

    Article  CAS  PubMed  Google Scholar 

  3. Juul, K.V., Bichet, D.G., Nielsen, S., and Norgaard, J.P., Am. J. Physiol. Renal. Physiol., 2014, vol. 306, pp. F931–F940. https://doi.org/10.1152/ajprenal.00604.2013

    Article  CAS  PubMed  Google Scholar 

  4. Birnbaumer, M., Trends Endocrinol. Metab., 2000, vol. 11, pp. 406–410. https://doi.org/10.1016/s1043-2760(00)00304-0

    Article  CAS  PubMed  Google Scholar 

  5. Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C.A., Skogs, M., Takanen, J.O., Berling, H., Tegel, H., Mulder, J., Nilsson, P., Schwenk, J.M., Lindskog, C., Danielsson, F., Mardinoglu, A., Sivertsson, A., von Feilitzen, K., Forsberg, M., Zwahlen, M., Olsson, I., Navani, S., Huss, M., Nielsen, J., Ponten, F., and Uhlén, M., Mol. Cell. Proteomics, 2014, vol. 13, pp. 397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  PubMed  Google Scholar 

  6. Phillips, P.A., Abrahams, J.M., Kelly, J.M., Mooser, V., Trinder, D., and Johnston, C.I., Endocrinology, 1990, vol. 126, pp. 1478–1484. https://doi.org/10.1210/endo-126-3-1478

    Article  CAS  PubMed  Google Scholar 

  7. Holmes, C.L., Landry, D.W., and Granton, J.T., Crit. Care, 2003, vol. 7, pp. 427–434. https://doi.org/10.1186/cc2337

    Article  PubMed  PubMed Central  Google Scholar 

  8. Koshimizu, T.A., Nakamura, K., Egashira, N., Hiroyama, M., Nonoguchi, H., and Tanoue, A., Physiol. Rev., 2012, vol. 92, pp. 1813–1864. https://doi.org/10.1152/physrev.00035.2011

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Martinez, A., Sottile, J., Fajardo, C., Riesgo, P., Camara, R., Simal, J.A., Lamas, C., Sandoval, H., Aranda, I., and Pico, A., PLoS One, 2018, vol. 13. e0198877. https://doi.org/10.1371/journal.pone.0198877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Greenberg, A. and Verbalis, J.G., Kidney Int., 2006, vol. 69, pp. 2124–2130. https://doi.org/10.1038/sj.ki.5000432

    Article  CAS  PubMed  Google Scholar 

  11. Kaufmann, J.E., Oksche, A., Wollheim, C.B., Gunther, G., Rosenthal, W., and Vischer, U.M., J. Clin. Invest., 2000, vol. 106, pp. 107–116. https://doi.org/10.1172/JCI9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Péqueux, C., Breton, C., Hagelstein, M., Geenen, V., and Legros, J., Lung Cancer, 2005, vol. 50, pp. 177–188. https://doi.org/10.1016/j.lungcan.2005.05.027

    Article  PubMed  Google Scholar 

  13. Iannucci, N.B., Ripoll, G.V., Garona, J., Cascone, O., Ciccia, G.N., Gomez, D.E., and Alonso, D.F., Future Med. Chem., 2011, vol. 3, pp. 1987–1993. https://doi.org/10.4155/fmc.11.152

    Article  CAS  PubMed  Google Scholar 

  14. Pifano, M., Garona, J., Capobianco, C.S., Gonzalez, N., Alonso, D.F., and Ripoll, G.V., Front Oncol., 2017, vol. 7, p. 11. https://doi.org/10.3389/fonc.2017.00011

    Article  PubMed  PubMed Central  Google Scholar 

  15. Noh, J.M., Park, W., Huh, S.J., Cho, E.Y., Choi, Y., Lee, J.H., and Bae, D.S., J. Gynecol. Oncol., 2009, vol. 20, pp. 215–220. https://doi.org/10.3802/jgo.2009.20.4.215

    Article  PubMed  PubMed Central  Google Scholar 

  16. Garona, J., Sobol., N.T., Pifano, M., Segatori, V.I., Gomez, D.E., Ripoll, G.V., and Alonso, D.F., Cancer Res. Treat., 2019, vol. 51, pp. 438–450. https://doi.org/10.4143/crt.2018.040

    Article  CAS  PubMed  Google Scholar 

  17. Russell, W.E. and Bucher, N.L., Am. J. Physiol. Gastrointest. Liver, 1983, vol. 245, pp. G321–G324. https://doi.org/10.1152/ajpgi.1983.245.2.G321

    Article  CAS  Google Scholar 

  18. North, W.G., Fay, M.J., Longo, K.A., and Du, J., Cancer Res., 1998, vol. 58, pp. 1866–1871.

    CAS  PubMed  Google Scholar 

  19. Thibonnier, M., Plesnicher, C.L., Berrada, K., and Berti-Mattera, L., Am. J. Physiol. Endocrinol. Metab., 2001, vol. 281, pp. E81–E92. https://doi.org/10.1152/ajpendo.2001.281.1.E81

    Article  CAS  PubMed  Google Scholar 

  20. Thibonnier, M., Conarty, D.M., and Plesnicher, C.L., Am. J. Physiol. Heart Circ. Physiol., 2000, vol. 279, pp. H2529–H2539. https://doi.org/10.1152/ajpheart.2000.279.5.H2529

    Article  CAS  PubMed  Google Scholar 

  21. Van Dyke, J.M., Bain, J.L., and Riley, D.A., Muscle Nerve, 2014, vol. 49, pp. 98–107. https://doi.org/10.1002/mus.23880

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh, P.M., Mikhailova, M., Bedolla, R., and Kreisberg, J.I., Am. J. Physiol. Renal. Physiol., 2001, vol. 280, pp. F972–F979. https://doi.org/10.1152/ajprenal.2001.280.6.F972

    Article  CAS  PubMed  Google Scholar 

  23. Chiu, T., Wu, S.S., Santiskulvong, C., Tangkijvanich, P., Yee, H.F., and Razengurt, E., Am. J. Physiol. Cell. Physiol., 2002, vol. 282, pp. C434–C450. https://doi.org/10.1152/ajpcell.00240.2001

    Article  CAS  PubMed  Google Scholar 

  24. Mendoza, M.C., Er, E.E., and Blenis, J., Trends Biochem. Sci., 2011, vol. 36, pp. 320–328. https://doi.org/10.1016/j.tibs.2011.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, S.H., Sharrocks, A.D., and Whitmarsh, A.J., Gene, 2013, vol. 513, pp. 1–13. https://doi.org/10.1016/j.gene.2012.10.033

    Article  CAS  PubMed  Google Scholar 

  26. Abe, Y., Yoon, S.O., Kubota, K., Mendoza, M.C., Gygi, S.P., and Blenis, J., J. Biol. Chem., 2009, vol. 284, pp. 14939–14948. https://doi.org/10.1074/jbc.M900097200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Péqueux, C., Keegan, B.P., Hagelstein, M.T., Geenen, V., Legros, J.J., and North, W.G., Endocrinol. Relat. Cancer, 2004, vol. 11, pp. 871–885. https://doi.org/10.1677/erc.1.00803

    Article  CAS  Google Scholar 

  28. Zhao, N., Peacock, S.O., Lo, C.H., Heidman, L.M., Rice, M.A., Fahrenholtz, C.D., Greene, A.M., Magani, F., Copello, V.A., Martinez, M.J., Zhang, Y., Daaka, Y., Lynch, C.C., and Burnstein, K.L., Sci. Transl. Med., 2019, vol. 11, art. eaaw4636. https://doi.org/10.1126/scitranslmed.aaw4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacKinnon, A.C., Tufail-Hanif, U., Wheatley, M., Rossi, A.G., Haslett, C., Seckl, M., and Sethi, T., Br. J. Pharmacol., 2009, vol. 156, pp. 36–47. https://doi.org/10.1111/j.1476-5381.2008.00003.x

    Article  CAS  Google Scholar 

  30. Sharova, N.P., Melnikova, V.I., Khegai, I.I., Karpova, Y.D., Dmitrieva, S.V., Astakhova, T.M., Afanaseva, M.A., Popova, N.A., Ivanova, L.N., and Zakharova, L.A., Dokl. Biochem. Biophys., 2008, vol. 419, pp. 93–97. https://doi.org/10.1134/S1607672908020129

    Article  CAS  PubMed  Google Scholar 

  31. Steinwall, M., Bossmar, T., Brouard, R., Laudanski, T., Olofsson, P., Urban, R., Wolff, K., Le-Fur, G., and Akerlund, M., Gynecol. Endocrinol., 2005, vol. 20, pp. 104–109. https://doi.org/10.1080/09513590400021144

    Article  CAS  PubMed  Google Scholar 

  32. Keegan, B.P., Akerman, B.L., Pequeux, C., and North, W.G., Breast. Cancer Res. Treat., 2006, vol. 95, pp. 265–277. https://doi.org/10.1007/s10549-005-9024-8

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, N., Peacock, S.O., Lo, C.H., Heidman, L.M., Rice, M.A., Fahrenholtz, C.D., Greene, A.M., Magani, F., Copello, V.A., Martinez, M.J., Zhang, Y., Daaka, Y., Lynch, C.C., and Burnstein, K.L., Sci. Transl. Med., 2019, vol. 11, art. eaaw4636. https://doi.org/10.1126/scitranslmed.aaw4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ripoll, G.V., Garona, J., Hermo, G.A., Gomez, D.E., and Alonso, D.F., Anticancer Res., 2010, vol. 30, pp. 5049–5054.

    CAS  PubMed  Google Scholar 

  35. Ripoll, G.V., Garona, J., Pifano, M., Farina, H.G., Gomez, D.E., and Alonso, D.F., Breast. Cancer Res. Treat., 2013, vol. 142, pp. 9–18. https://doi.org/10.1007/s10549-013-2724-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tahara, A., Saito, M., Sugimoto, T., Tomura, Y., Wada, K., Kusayama, T., Tsukada, J., Ishii, N., Yatsu, T., Uchida, W., and Tanaka, A., Naunyn. Schmiedebergs. Arch. Pharmacol., 1998, vol. 357, pp. 63–69. https://doi.org/10.1007/pl00005139

    Article  CAS  PubMed  Google Scholar 

  37. Ripoll, G.V., Pifano, M., Garona, J., and Alonso, D.F., Front. Oncol., 2020, vol. 9, p. 1490. https://doi.org/10.3389/fonc.2019.01490

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carmeliet, P., Nat. Med., 2000, vol. 6, pp. 389–395. https://doi.org/10.1038/74651

    Article  CAS  PubMed  Google Scholar 

  39. Ferrara, N., Kidney Int., 1999, vol. 56, pp. 794–814. https://doi.org/10.1046/j.1523-1755.1999.00610.x

    Article  CAS  PubMed  Google Scholar 

  40. Apte, R.S., Chen, D.S., and Napoleone Ferrara, N., Cell, 2019, vol. 176, pp. 1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, E., Morimoto, M., Kitajima, S., Koike, T., Yu, Y., Shiiki, H., Nagata, M., Watanabe, T., and Fan, J., J. Am. Soci. Nephrol., 2007, vol. 18, pp. 2094–2104. https://doi.org/10.1681/ASN.2006010075

    Article  CAS  Google Scholar 

  42. Okabe, K., Kobayashi, S., Yamada, T., Kurihara, T., Tai-Nagara, I., Miyamoto, T., Mukouyama, Y.S., Sato, T.N., Suda, T., Ema, M., and Kubota, Y., Cell, 2014, vol. 159, pp. 584–596. https://doi.org/10.1016/j.cell.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  43. Rashidi, B.H., Sarhangi, N., Aminimoghaddam, S., Haghollahi, F., Naji, T., Amoli, M.M., and Shahrabi-Farahani, M., Mol. Biol. Rep., 2019, vol. 46, pp. 3445–3450. https://doi.org/10.1007/s11033-019-04807-6

    Article  CAS  PubMed  Google Scholar 

  44. Jayson, G.C., Kerbel, R., Ellis, L.M., and Harris, A.L., Lancet, 2016, vol. 388, pp. 518–529. https://doi.org/10.1016/S0140-6736(15)01088-0

    Article  CAS  PubMed  Google Scholar 

  45. Amoli, M.M., Amiri, P., Alborzi, A., Larijani, B., Saba, S., and Tavakkoly-Bazzaz, J., Mol. Biol. Rep., vol. 39, pp. 8595–8599. https://doi.org/10.1007/s11033-012-1713-x

  46. Battinelli, E.M., Markens, B.A., and Italiano, J.E., Blood, 2011, vol. 118, pp. 1359–1369. https://doi.org/10.1182/blood-2011-02-334524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olsson, A.K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L., Nat. Rev. Mol. Cell. Biol., 2006, vol. 7, pp. 359–371. https://doi.org/10.1038/nrm1911

    Article  CAS  PubMed  Google Scholar 

  48. Morel, M., Vanderstraete, M., Cailliau, K., Hahnel, S., Grevelding, C.G., and Dissous, C., PLoS One, 2016, vol. 11, e0163283. https://doi.org/10.1371/journal.pone.0163283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holmes, K., Roberts, O.L., Thomas, A.M., and Cross, M.J., Cell. Signall., 2007, vol. 19, pp. 2003–2012. https://doi.org/10.1016/j.cellsig.2007.05.013

    Article  CAS  Google Scholar 

  50. Shibuya, M., Angiogenesis, 2006, vol. 9, pp. 225–230. https://doi.org/10.1007/s10456-006-9055-8

    Article  CAS  PubMed  Google Scholar 

  51. Nakagawa, T., Ohta, K., Uetsuki, R., Kato, H., Naruse, T., Murodumi, H., Yokoyama, S., Sakuma, M., Ono, S., and Takechi, M., Biochem. Genet., 2020, vol. 58, pp. 473–489. https://doi.org/10.1007/s10456-006-9055-8

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, Z., Christofidou-Solomidou, M., Garlanda, C., and DeLisser, H.M., Angiogenesis, 1999, vol. 3, pp. 181–188. https://doi.org/10.1023/a:1009092107382

    Article  CAS  PubMed  Google Scholar 

  53. Newman, P.J. and Newman, D.K., Arterioscler. Thromb. Vas. Biol., 2003, vol. 23, pp. 953–964. https://doi.org/1161/01.ATV.0000071347.69358.D9

    Google Scholar 

  54. Dejana, E., Nat. Rev. Mol. Biol., 2004, vol. 5, pp. 261–270. https://doi.org/10.1038/nrm1357

    Article  CAS  Google Scholar 

  55. Naik, T.U., Naik, M.U., and Naik, U.P., Front. Biosci., 2008, vol. 13, pp. 258–262. https://doi.org/10.2741/2676

    Article  CAS  PubMed  Google Scholar 

  56. Tzima, E., Irani-Tehrani, M., Kiosses, W.B., Dejana, E., Schultz, D.A., Engelhardt, B., Cao, G., DeLisser, H., and Schwartz, M.A., Nature, 2005, vol. 437, pp. 426–431. https://doi.org/10.1038/nature03952

    Article  CAS  PubMed  Google Scholar 

  57. Lertkiatmongkol., P., Liao, D., Mei, H., Hu, Y., and Newman, P.J., Curr. Opin. Hematol., 2016, vol. 23, pp. 253–259. https://doi.org/10.1097/MOH.0000000000000239

  58. Osawa, M., Masuda, M., Kusano, K., and Fujiwara, K., J. Cell Biol., 2002, vol. 158, pp. 773–785. https://doi.org/10.1083/jcb.200205049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Conway, D.E., Breckenridge, M.T., Hinde, E., Gratton, E., Chen, C.S., and Schwartz, M.A., Curr. Biol., 2013, vol. 23, pp. 1024–1030. https://doi.org/10.1016/j.cub.2013.04.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ilan, N., Cheung, L., Pinter, E., and Madri, J.A., J. Biol. Chem., 2000, vol. 275, pp. 21435–21443. https://doi.org/10.1074/jbc.M001857200

    Article  CAS  PubMed  Google Scholar 

  61. Hua, C.T., Gamble, J.R., Vadas, M.A., and Jackson, D.E., J. Biol. Chem., 1998, vol. 273, pp. 28332–28340. https://doi.org/10.1074/jbc.273.43.28332

    Article  CAS  PubMed  Google Scholar 

  62. Pumphrey, N.J., Taylor, V., Freeman, S., Douglas, M.R., Bradfield, P.F., Young, S.P., Lord, J.M., Wakelam, M.J., Bird, I.N., Salmon, M., and Buckley, C.D., FEBS Lett., 1999, vol. 450, pp. 77–83. https://doi.org/10.1016/s0014-5793(99)00446-9

    Article  CAS  PubMed  Google Scholar 

  63. Lorenz, U., Immunol. Rev., 2009, vol. 228, pp. 342–359. https://doi.org/10.1111/j.1600-065X.2008.00760.x

    Article  PubMed  PubMed Central  Google Scholar 

  64. Qu, C.K., Cell. Res., 2000, vol. 10, pp. 279–288. https://doi.org/10.1038/sj.cr.7290055

    Article  CAS  PubMed  Google Scholar 

  65. Schulze, W.X., Deng, L., and Mann, M., Mol. Syst. Biol., 2005, vol. 1, pp. E1–E13. https://doi.org/10.1038/msb4100012

    Article  CAS  Google Scholar 

  66. Masuda, M., Osawa, M., Shigematsu, H., Harada, N., and Fujiwara, K., FEBS Lett., 1997, vol. 408, pp. 331–336. https://doi.org/10.1016/s0014-5793(97)00457-2

    Article  CAS  PubMed  Google Scholar 

  67. Cao, G., O’Brien, C.D., Zhou, Z., Sanders, S.M., Greenbaum, J.N., Makrigiannakis, A., and DeLisser, H.M., Am. J. Physiol. Cell. Physiol., 2002, vol. 282, pp. C1181–C1190. https://doi.org/10.1152/ajpcell.00524.2001

    Article  CAS  PubMed  Google Scholar 

  68. Matsumura, T., Wolff, K., and Petzelbauer, P., J. Immunol., 1997, vol. 158, pp. 3408–3416.

    CAS  PubMed  Google Scholar 

  69. Yang, S., Graham, J., Kahn, J.W., Schwartz, E.A., and Gerritsen, M.E., Am. J. Pathol., 1999, vol. 155, pp. 887–895. https://doi.org/10.1016/S0002-9440(10)65188-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leu, S.J., Lam, S.C., and Lau, L.F., J. Biol. Chem., 2002, vol. 277, pp. 46248–46255. https://doi.org/10.1074/jbc.M209288200

    Article  CAS  PubMed  Google Scholar 

  71. Wong, C.W.Y., Wiedle, G., Ballestrem, C., Wehrle-Haller, B., Etteldorf, S., Bruckner, M., Engelhardt, B., Gisler, R.H., and Imhof, B.A., Mol. Biol. Cell, 2000, vol. 11, pp. 3109–3121. https://doi.org/10.1091/mbc.11.9.3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, T. and Newman, P.J., J. Cell Biol., 2001, vol. 152, pp. 65–74. https://doi.org/10.1083/jcb.152.1.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Horton, M.A., Int. J. Biochem. Cell. Biol., 1997, vol. 29, pp. 721–725. https://doi.org/10.1016/S1357-2725(96)00155-0

    Article  CAS  PubMed  Google Scholar 

  74. Liu, Z., Wang, F., and Chen, X., Drug Dev. Res., 2008, vol. 69, pp. 329–339. https://doi.org/10.1002/ddr.20265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sasaki, T., Fassler, R., and Hohenester, E., J. Cell Biol., 2004, vol. 164, pp. 959–963. https://doi.org/10.1083/jcb.200401058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Franzke, C.W., Bruckner, P., and Bruckner-Tuderman, L., J. Biol. Chem., 2005, vol. 280, pp. 4005–4008. https://doi.org/10.1074/jbc.R400034200

    Article  CAS  PubMed  Google Scholar 

  77. Schottelius, M., Laufer, B., Kessler, H., and Wester, H.-J., Acc. Chem. Res., 2009, vol. 42, pp. 969–980. https://doi.org/10.1021/ar800243b

    Article  CAS  PubMed  Google Scholar 

  78. Beacham, D.A., Wise, R.J., Turci, S.M., and Handin, R.I., J. Biol. Chem., 1992, vol. 267, pp. 3409–3415.

    Article  CAS  Google Scholar 

  79. Lopes da Silva, M. and Cutler, D.F., Blood, 2016, vol. 128, p. 277285. https://doi.org/10.1182/blood-2015-10-677054

    Article  CAS  Google Scholar 

  80. Lenting, P.J., Christophe, O.D., and Denis, C.V., Blood, 2015, vol. 125, pp. 2019–2028. https://doi.org/10.1182/blood-2014-06-528406

    Article  CAS  PubMed  Google Scholar 

  81. Metcalf, D.J., Nightingale, T.D., Zenner, H.L., Lui-Roberts, W.W., and Cutler, D.F., J. Cell Sci., 2008, vol. 121, pp. 19–27. https://doi.org/10.1242/jcs.03494

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, Y.F., Eng, E.T., Zhu, J., Lu, C., Walz, T., and Springer, T.A., Blood, 2012, vol. 120, pp. 449–458. https://doi.org/10.1182/blood-2012-01-405134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Randi, A.M., Smith, K.E., and Castaman, G., Blood, 2018, vol. 132, pp. 132–140. https://doi.org/10.1182/blood-2018-01-76901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mahabeleshwar, G.H., Chen, J., Feng, W., Somanath, P.R., Razorenova, O.V., and Byzova, T.V., Cell. Cycle, 2008, vol. 7, pp. 335–347. https://doi.org/10.4161/cc.7.3.5234

    Article  CAS  PubMed  Google Scholar 

  85. Borges, E., Jan, Y., and Ruoslahti, E., J. Biol. Chem., 2000, vol. 275, pp. 39867–39873. https://doi.org/10.1074/jbc.M007040200

    Article  CAS  PubMed  Google Scholar 

  86. Reynolds, A.R., Hart, I.R., Watson, A.R., Welti, J.C., Silva, R.G., Robinson, S.D., Da Violante, G., Gourlaouen, M., Salih, M., Jones, M.C., Jones, D.T., Saunders, G., Kostourou, V., Perron-Sierra, F., Norman, J.C., Tucker, G.C., and Hodivala-Dilke, K.M., Nat. Med., 2009, vol. 15, pp. 392–400. https://doi.org/10.1038/nm.1941

    Article  CAS  PubMed  Google Scholar 

  87. Somanath, P.R., Malinin, N.L., and Byzova, T.V., Angiogenesis, 2009, vol. 12, pp. 177–185. https://doi.org/10.1007/s10456-009-9141-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Starke, R.D., Ferraro, F., Paschalaki, K.E., Dryden, N.H., McKinnon, T.A., Sutton, R.E., Payne, E.M., Haskard, D.O., Hughes, A.D., Cutler, D.F., Laffan, M.A., and Randi, A.M., Blood, 2011, vol. 117, pp. 1071–1080. https://doi.org/10.1182/blood-2010-01-264507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Turner, N.A. and Moake, J.L., PLoS One, 2015, vol. 10, e0140740. https://doi.org/10.1371/journal.pone.0140740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Biesemann, A., Gorontzi, A., Barr, F., and Gerke, V., J. Biol. Chem., 2017, vol. 292, pp. 11631–11640. https://doi.org/10.1074/jbc.M116.773333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Goehring, A.S., Pedroja, B.S., Hinke, S.A., Langeberg, L.K., and Scott, J.D., J. Biol. Chem., 2007, vol. 282, pp. 33155–33167. https://doi.org/10.1074/jbc.M705167200

    Article  CAS  PubMed  Google Scholar 

  92. Carnegie, G.K., Means, C.K., and Scott, J.D., IUBMB Life, 2009, vol. 61, pp. 394–406. https://doi.org/10.1002/iub.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, X., Odom, D.T., Koo, S.-H., Conkright, M.D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., Kadam, S., Ecker, J.R., Emerson, B., Hogenesch, J.B., Unterman, T., Young, R.A., and Montminy, M., Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 4459–4464. https://doi.org/10.1073/pnas.0501076102

  94. Conkright, M.D. and Montminy, M., Trends Cell. Biol., 2005, vol. 15, pp. 457–459. https://doi.org/10.1016/j.tcb.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  95. Grandoch, M., Roscioni, S.S., and Schmidt, M., Br. J. Pharmacol., 2010, vol. 159, pp. 265–284. https://doi.org/10.1111/j.1476-5381.2009.00458.x

    Article  CAS  PubMed  Google Scholar 

  96. Mansilla, ParejaM.E., Gaurón, M.C., Robledo, E., Aguilera, M.O., and Colombo, M.I., PLoS One, 2019, vol. 14, e0212202. https://doi.org/10.1371/journal.pone.0212202

    Article  CAS  Google Scholar 

  97. Rehmann, H., Das, J., Knipscheer, P., Wittinghofer, A., and Bos, J.L., Nature, 2006, vol. 439, pp. 625–628. https://doi.org/10.1038/nature04468

    Article  CAS  PubMed  Google Scholar 

  98. Sugawara, K., Shibasaki, T., Takahashi, H., and Seino, S., Gene, 2016, vol. 575, pp. 577–583. https://doi.org/10.1016/j.gene.2015.09.029

    Article  CAS  PubMed  Google Scholar 

  99. Raaijmakers, J.H. and Bos, J.L., J. Biol. Chem., 2009, vol. 284, pp. 10995–10999. https://doi.org/10.1074/jbc.R800061200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gupta, V.K., Rajala, A., and Rajala, R.V., Adv. Exp. Med. Biol., 2012, vol. 723, pp. 777–782. https://doi.org/10.1007/978-1-4614-0631-0_99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Qiu, W., Zhuang, S., von Lintig, F.C., Boss, G.R., and Pilz, R.B., J. Biol. Chem., 2000, vol. 275, pp. 31921–31929. https://doi.org/10.1074/jbc.M003327200

    Article  CAS  PubMed  Google Scholar 

  102. Rodriguez-Viciana, P., Sabatier, C., and McCormick, F., Mol. Cell. Biol., 2004, vol. 24, pp. 4943–4954. https://doi.org/10.1128/MCB.24.11.4943-4954.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu, S., Khoo, S., Dang, A., Witt, S., Do, V., Zhen, E., Schaefer, E.M., and Cobb, M.H., Mol. Endocrinol., 1997, vol. 11, pp. 1618–1625. https://doi.org/10.1210/mend.11.11.0010

    Article  CAS  PubMed  Google Scholar 

  104. Roskoski, R., Jr., Biochem. Biophys. Res. Commun., 2012, vol. 417, pp. 5–10. https://doi.org/10.1016/j.bbrc.2011.11.145

    Article  CAS  PubMed  Google Scholar 

  105. Gardner, A.M., Vaillancourt, R.R., Lange-Carter, C.A., and Johnson, G.L., Mol. Biol. Cell, 1994, vol. 5, pp. 193–201. https://doi.org/10.1091/mbc.5.2.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Roux, P.P., Richards, S.A., and Blenis, J., Mol. Cell Biol., 2003, vol. 23, pp. 4796–4804. https://doi.org/10.1128/MCB.23.14.4796-4804.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Waskiewicz, A.J., Flynn, A., Proud, C.G., and Cooper, J.A., EMBO J. (England), 1997, vol. 16, pp. 1909–1920. https://doi.org/10.1093/emboj/16.8.1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Johannessen, M., Delghandi, M.P., and Moens, U., Cell. Signal., 2004, vol. 16, pp. 1211–1227. https://doi.org/10.1016/j.cellsig.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  109. Li, G., Jiang, Q., and Xu, K., Biochimie, 2019, vol. 163, pp. 94–100. https://doi.org/10.1016/j.biochi.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  110. D’Amico, M., Hulit, J., Amanatullah, D.F., Zafonte, B.T., Albanese, C., Bouzahzah, B., Fu, M., Augenlicht, L.H., Donehower, L.A., Takemaru, K.-I., Moon, R.T., Davis, R., Lisanti, M.P., Shtutman, M., Zhurinsky, J., Ben-Ze’ev, A., Troussard, A.A., Dedhar, S., and Pestell, R.G., J. Biol. Chem., 2000, vol. 275, pp. 32649–32657. https://doi.org/10.1074/jbc.M000643200

    Article  PubMed  Google Scholar 

  111. Tigan, A.-S., Bellutti, F., Kollmann, K., Tebb, G., and Sexl, V., Oncogene, 2016, vol. 35, pp. 3083–3091. https://doi.org/10.1038/onc.2015.407

    Article  CAS  PubMed  Google Scholar 

  112. Klochkov, S.G., Neganova, M.E., and Aleksandrova, Yu.R., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 891–902. https://doi.org/10.1134/S1068162020050118

    Article  CAS  Google Scholar 

  113. Salem, M.S., El-Helw, E.A.E., and Derbala, H.A.Y., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 77–84. https://doi.org/10.1134/S1068162020010094

    Article  CAS  Google Scholar 

  114. Mavani, G.P., DeVita, M.V., and Michelis, M.F., Front. Med., 2015, vol. 2, p. 19. https://doi.org/10.3389/fmed.2015.00019

    Article  Google Scholar 

  115. Khegay, I.I., Popova, N.A., and Ivanova, L.N., Tumour Biol., 2010, vol. 31, pp. 569–573. https://doi.org/10.1007/s13277-010-0070-4

    Article  CAS  PubMed  Google Scholar 

  116. Khegay, I.I. and Ivanova, L.N., Biochem. Genet., 2015, vol. 53, pp. 1–7. https://doi.org/10.1007/s10528-015-9665-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the budgetary project of the Institute of Cytology and Genetics (Siberian Branch, Russian Academy of Sciences) No. 0259-2021-0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Khegay.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Barkhash

Abbreviations: AKAP, A kinase anchoring protein; AKT, AKR thymoma oncogene; AVP, arginine–vasopressin; CRE, cAMP response element; CREB, cAMP response element binding protein; DDAVP, diamino D arginine–vasopressin; Epac, exchange factor activated by cAMP; ERK1/2, extracellular signal-regulated kinase; GPCR, G protein-coupled receptor; ITIM, immunoreceptor tyrosine based inhibitory motif; LVL, lysine–vasopressin; MAPK, mitogen-activated protein kinase; MEK, mitogen-activated protein kinase kinase; PECAM-1, platelet/endothelial cell adhesion molecule 1; RTK, receptor tyrosine kinase; SH2, Sarcoma Raus Homology 2; SHB, SH2 containing protein binding adapter; SHP, SH2 containing protein tyrosine phosphatase; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khegay, I.I. Vasopressin Receptors in Blood Vessels and Proliferation of Endotheliocytes. Russ J Bioorg Chem 47, 815–827 (2021). https://doi.org/10.1134/S1068162021040129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021040129

Keywords:

Navigation