Skip to main content

Spiro Benzodiazepine Substituted Fluorocoumarins as Potent Anti-Anxiety Agents

Abstract

1,5-Benzodiazepines are one of the important class of tranquilizers. The fusion of heterocyclic systems like coumarins and indolines with the benzodiazepine seems quite encouraging for the synthesis of derivatives with enhanced anti-anxiety property. The benzodiazepine derivatives containing fluorine were synthesized and studied for their anti-anxiety activity on mice using plus maze apparatus with sodium pentabarbitone as the standard. Compound with mono substituted fluorine showed comparable anti-anxiety activity with the standard. The docking studies with Translocator protein (TSPO) (PDB: 4UC2) were done and further supported by molecular dynamics simulations. The in vivo test results are in well agreement with docking and molecular dynamics simulation studies.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Narayana, B., Vijaya Raj, K.K., Ashalatha, B.V., and Sucheta, K.N., Eur. J. Med. Chem., 2006, vol. 41, no. 3, pp. 417–422. https://doi.org/10.1016/j.ejmech.2005.12.003

    CAS  Article  PubMed  Google Scholar 

  2. Shader, R.I. and Greenblatt, D.J., N. Engl. J. Med., 1993, vol. 328, pp. 1398–1405. https://doi.org/10.1056/NEJM199305133281907

    CAS  Article  PubMed  Google Scholar 

  3. McKernan, R.M., Rosahl, T.W., Reynolds, D.S., Sur, C., Wafford, K.A., and Atack J.R., Nat. Neurosci., 2000, vol. 3, pp. 587–592. https://doi.org/10.1038/75761

    CAS  Article  PubMed  Google Scholar 

  4. Chweh, A.Y., Lin Y.B., and Swinyard, E.A., Life Sci., 1984, vol. 34, pp. 1763–1768. https://doi.org/10.1016/0024-3205(84)90576-9

    CAS  Article  PubMed  Google Scholar 

  5. Wright, W.B., Greenblatt, E.N., Day, I.P., Quinones N.Q., and Hardy, R.A., J. Med. Chem., 1980, vol. 23, pp. 462–465. https://doi.org/10.1021/jm00178a020

    CAS  Article  PubMed  Google Scholar 

  6. Hamilton. J.T., Can. J. Physiol. Pharmacol., 1967, vol. 45, pp. 191–198. https://doi.org/10.1139/y67-022

  7. Kukla, M.J. and Berslin, H.J., J. Med. Chem., 1991, vol. 34, pp. 746–751. https://doi.org/10.1021/jm00106a040

    CAS  Article  PubMed  Google Scholar 

  8. Cortez-Maya, S., Hernández-Ortega, S., Ramírez-Apan, T., Lijanova, I.V., and Martínez-García, M., Bioorg. Med. Chem., 2012, vol. 20, pp. 415–421. https://doi.org/10.1016/j.bmc.2011.10.070

    CAS  Article  PubMed  Google Scholar 

  9. Goldberg, R., Drugs Across the Spectrum, Cengage Learning, 2009, p.195.

    Google Scholar 

  10. Canning, C., Sun, S., Ji, X., Gupta, S., and Zhou. K., J. Ethnopharm., 2013, vol. 147, pp. 259–262. https://doi.org/10.1016/j.jep.2013.02.026

    CAS  Article  Google Scholar 

  11. Kokron, O., Maca, S., Gasser, G., and Schmidt, P.R., Oncology, 1991, vol. 48, pp. 91–102. https://doi.org/10.1159/000226905

    Article  Google Scholar 

  12. Patagar Dayanand, Kusanur Raviraj, Sitwala Nikum, D., Ghate Manjunath, D., Saravanakumar Shanmugasundar, Nembenna Sharanappa, and Gediya Piyush, A., J. Heterocycl. Chem., 2019, vol.56, pp. 2761–2771. https://doi.org/10.1002/jhet.3644

    CAS  Article  Google Scholar 

  13. Kaushik, N.K., Kaushik, N., Attri, P., Naresh Kumar, Hyeok Kim Chung, Verma Akhilesh Kumar, and Eun Ha Choi., Molecules, 2013, vol. 18, pp. 6620–6662. https://doi.org/10.3390/molecules18066620

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Filler. R., Kobayashi. Y., and Yagupolskii. L.M., Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications (Studies in Org. Chem.), Amsterdam: Elsevier, 1993, vol. 48.

  15. Kirsch, P., Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed., Wiley-VCH, 2013.

    Book  Google Scholar 

  16. Ojima, I., Fluorine in Medicinal Chemistry and Chemical Biology, New York: Wiley, 2009.

    Book  Google Scholar 

  17. Uneyama, K., Organofluorine Chemistry, Oxford, UK: Blackwell, 2006, p. 339.

    Book  Google Scholar 

  18. Dalvit, C. and Vulpetti, A., Chem. Med. Chem., 2012, vol. 7, pp. 262–272. https://doi.org/10.1002/cmdc.201100483

    CAS  Article  PubMed  Google Scholar 

  19. Schneider H.-J., Chem. Sci., 2012, vol. 3, pp.1381–1394. https://doi.org/10.1039/c2sc00764a

    CAS  Article  Google Scholar 

  20. Howard, J.A.K., Hoy, V.J., O’Hagan, D., and Smith, G.T., Tetrahedron, 1996, vol. 38, pp.12613–12622.

    Article  Google Scholar 

  21. Dunitz, J.D. and Taylor, R., Chem. Eur. J., 1997, vol. 3, pp. 89–98. https://doi.org/10.1002/chem.19970030115

    CAS  Article  Google Scholar 

  22. Meanwell, N.A., J. Med. Chem., 2011, vol. 54, pp. 2529–2591. https://doi.org/10.1021/jm1013693

    CAS  Article  PubMed  Google Scholar 

  23. Taylor, J.M.W., Allen, A.-M., and Graham A., Clin. Sci., 2014, vol. 127, pp. 603–613. https://doi.org/10.1042/CS20140047

    CAS  Article  Google Scholar 

  24. Costa, B., Da Pozzo, E., and Martini, C., Curr. Top. Med. Chem., 2012, vol. 12, pp. 270–285. https://doi.org/10.2174/156802612799078720

    CAS  Article  PubMed  Google Scholar 

  25. Kusanur, R.A., Ghate, M., and Kulkarni, M.V., J. Chem. Sci., 2004, vol. 116, pp. 265–270. https://doi.org/10.1007/BF02708277

    CAS  Article  Google Scholar 

  26. Knoevenagel, E., Berichte., 1898, vol. 31, pp. 730–737.

    CAS  Google Scholar 

  27. Bagchi, P.P., Ittyeah, P.I., Agra Univ. J. Res., 1955, vol. 14, p. 5.

    Google Scholar 

  28. Crawley, J.N., Godwin, F.K., Pharmacol. Biochem. Behav., 1980, vol. 13, pp. 167–170. https://doi.org/10.1016/0091-3057(80)90067-2

    CAS  Article  PubMed  Google Scholar 

  29. Kilfoil, T., Michel, A., and Montgomony, D., Psyco. Pharmacol., 1988, vol. 28. pp. 901–905.

    Google Scholar 

  30. Schrödinger Release, 2019-3: Desmond Molecular Dynamics System.

  31. D.E. Shaw Research, New York, NY, 2019.

  32. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2019.

Download references

ACKNOWLADGMENTS

he authors are thankful to Rastreeya Sikshana Samithi Trust for constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raviraj Kusanur.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The article does not involve any human studies. However, for animal studies all applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: TSPO, translocator protein; PDB, protein data base.

Corresponding author: phone: +91 9448823443.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patagar, D., Uttarkar, A., Patra, S.M. et al. Spiro Benzodiazepine Substituted Fluorocoumarins as Potent Anti-Anxiety Agents. Russ J Bioorg Chem 47, 390–398 (2021). https://doi.org/10.1134/S1068162021020199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021020199

Keywords:

  • spirobenzodiazepine
  • anti-anxiety activity
  • translocator protein
  • docking
  • molecular dynamics simulation