Skip to main content

Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery

Abstract

Targeted drug delivery is a new method in the therapy of various diseases, especially cancer. Typically the therapeutic drug is encapsulated into the polymer nanoparticle modified by antibodies or nucleic acids aptamers that recognize the receptors at the surface of the targeted cells. Among recognition elements the nucleic acids aptamers are of high interest. They are single stranded DNA or RNA that in solution folds into 3D structure forming binding site for specific molecule or cell. Recent decade demonstrated high efficiency of targeted drug delivery using nanoparticles and nanomotors modified by aptamers on model systems, such as cell cultures. It is assumed that such an approach will help in improvement of the therapy of cancer. This review is focused on the recent advances in targeted drug delivery by nanoparticles and nanomotors modified by aptamers. The introduction into the nanoparticle and nanomotors structure, their modification by aptamers and interaction with cells is presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. Elsabahy, M., and Wooley, K.L., Chem. Soc. Rev., 2012, vol. 41, pp. 2545–2561. https://doi.org/10.1039/c2cs15327k

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Lönne, M., Bolten, S., Lavrentieva, A., Stahl, F., Scheper, T., and Walter, J.G., Biotechnol. Rep., 2015, vol. 8, pp. 16–23. https://doi.org/10.1016/j.btre.2015.08.006

    Article  Google Scholar 

  3. Baetke, S.C., Lammers, T., and Kiessling, F., Br. Inst. Radiol., 2015, vol. 88, pp. 19–21. https://doi.org/10.1259/bjr.20150207

    Article  Google Scholar 

  4. Tuerk, C., and Gold, L., Science, 1990, vol. 249, pp. 505–510. https://doi.org/10.1126/science.2200121

    CAS  Article  PubMed  Google Scholar 

  5. Heilkenbrinker, A., Reinemann, Ch., Stoltenburg, R., Walter, J.G., Jochums, A., Stahl, F., Zimmermann, S., Strehlitz, Z., and Scheper, T., Anal. Chem., 2015, vol. 87, pp. 677–685. https://doi.org/10.1021/ac5034819

    CAS  Article  PubMed  Google Scholar 

  6. Urmann, K., Walter, J.-G., Scheper, T., and Segal, E., Anal. Chem., 2015, vol. 87, pp. 1999–2006. https://doi.org/10.1021/ac504487g

    CAS  Article  PubMed  Google Scholar 

  7. Spiridonova, V.A., Kudzhaev, A.M., Melnichuk, A.V., Gainutdinov, A.A., Andrianova, A.G., and Rotanova, T.V., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 626–630. https://doi.org/10.1134/S1068162015060151

    CAS  Article  Google Scholar 

  8. Walter, J.G., Stahl, F., and Scheper, T., Eng. Life Sci., 2012, vol. 12, pp. 496–506, https://doi.org/10.1002/elsc.201100197

    CAS  Article  Google Scholar 

  9. Schax, E., Lönne, M., Scheper, T., Belkin, S., and Walter, J.-G., Biotechnol. Bioprocess Eng., 2015, vol. 20, pp. 1016–1025. https://doi.org/10.1007/s12257-015-0486-1

    CAS  Article  Google Scholar 

  10. Chumakov, A.M., Yuhina, E.S., Frolova, E.I., Kravchenko, J.E., and Chumakov, S.P., Russ. J. Bioorg. Chem., 2016, vol. 42, pp. 1–13. https://doi.org/10.1134/S1068162016010027

    CAS  Article  Google Scholar 

  11. Meyer, M., Scheper, T., and Walter, J.G., Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 7097–7109. https://doi.org/10.1007/s00253-013-5070-z

    CAS  Article  PubMed  Google Scholar 

  12. Modrejewski, J. Walter, J. Kretschmer, I. Kemal, E. Green, M. Belhadj, H. Blume, C., and Scheper, T., BioNanoMaterials, 2016, vol. 17, pp. 43–51. https://doi.org/10.1515/bnm-2015-0027

    Article  Google Scholar 

  13. Poturnayová, A., Buríková, M., Bízik, J., and Hianik, T., ChemPhysChem, 2019, vol. 20, pp. 545–554. https://doi.org/10.1002/cphc.201801126

    CAS  Article  PubMed  Google Scholar 

  14. Poturnayová, A., Dzubinová, L., Burikova, M., Bizik, J., and Hianik, T., Biosensors, 2019, vol. 9, article no. 72. https://doi.org/10.3390/bios9020072

    CAS  Article  PubMed Central  Google Scholar 

  15. Balalaeva, I.V., Zdobnova, T.A., Sokolova, E.A., and Deyev, S.M., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 536–542. https://doi.org/10.1134/S1068162015050040

    CAS  Article  Google Scholar 

  16. van Vlerken, L.E. and Amiji, M.M., Expert Opin. Drug Deliv., 2006, vol. 3, pp. 205–216. https://doi.org/10.1517/17425247.3.2.205

    CAS  Article  PubMed  Google Scholar 

  17. Wang, J., Biosens. Bioelectron., 2016, vol. 76, pp. 234–242. https://doi.org/10.1016/j.bios.2015.04.095

    CAS  Article  PubMed  Google Scholar 

  18. Baeza, A., and Vallet-Regí, M., Int. J. Mol. Sci., 2018, vol. 19, article no. 1579. https://doi.org/10.3390/ijms19061579

    CAS  Article  PubMed Central  Google Scholar 

  19. Beltrán-Gastélum, M., Esteban-Fernández de Ávila, B., Gong, H., Venugopalan, P.L., Hianik, T., Wang, J., and Subjakova, V., ChemPhysChem, 2019, vol. 20, pp. 3177–3180. https://doi.org/10.1002/cphc.201900844

    CAS  Article  PubMed  Google Scholar 

  20. Khan, I., Saeed, K., and Khan, I. Arab. J. Chem., 2017, vol. 12, pp. 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    CAS  Article  Google Scholar 

  21. Saeed, K. and Khan, I., Carbon Lett., 2013, vol. 14, pp. 131–144. https://doi.org/10.5714/CL.2013.14.3.131

    Article  Google Scholar 

  22. Elliott, J.A., Shibuta, Y., Amara, H., Bichara, Ch., and Neyts, E.C., Nanoscale, 2013, vol. 5, pp. 6662–6676. https://doi.org/10.1039/C3NR01925J

    CAS  Article  PubMed  Google Scholar 

  23. Miodek, A., Castillo, G., Hianik, T., and Korri-Youssoufi, H., Multiwalled carbon, Anal. Chem., 2013, vol. 85, pp. 7704–7712. https://doi.org/10.1021/ac400605p

    CAS  Article  PubMed  Google Scholar 

  24. Anu Mary Ealia, S., and Saravanakumar, M.P. IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 263, article no. 032019. https://doi.org/10.1088/1757-899X/263/3/032019

  25. Kawamura, G., Nogami, M., and Matsuda, A., J. Nanomater., 2013, vol. 2013, article no. 631350. https://doi.org/10.1155/2013/631350

  26. Mody,V.V., Siwale, R., Singh, A., and Mody, H.R., J. Pharm. Bioall. Sci., 2010, vol. 2, pp. 282–289. https://doi.org/10.4103/0975-7406.72127

    CAS  Article  Google Scholar 

  27. Lansdown, A., Curr. Probl. Dermatol., 2006, vol. 33, pp. 17–34. https://doi.org/10.1159/000093928

    CAS  Article  PubMed  Google Scholar 

  28. Schultz, S., Smith, D.R., Mock, J.J., and Schultz, D.A., Proc. Natl. Acad. Sci. U. S. A., 2000 vol. 97, pp. 996–1001. https://doi.org/10.1073/pnas.97.3.996

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Hasany, S.F., Ahmed, I., Rajan, J., and Rehman, A., Nanosci. Nanotechnol., 2012, vol. 2, pp. 148–158. https://doi.org/10.5923/j.nn.20120206.01

    CAS  Article  Google Scholar 

  30. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., and Hussain, A., Nanotechnol. Sci. Appl., 2016, vol. 9, pp. 49–67. https://doi.org/10.2147/NSA.S99986

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Thomas, S.C., Harshita, M.P.K., and Talegaonkar, S., Curr. Pharm. Des., 2015, vol. 21, pp. 6165–6188. https://doi.org/10.2174/1381612821666151027153246

    CAS  Article  PubMed  Google Scholar 

  32. Ali, S., Khan, I., Khan, S.A., Sohail, M. Ahmed, R., Rehman, A., ur Ansari, M.S., and Morsy, M.A., J. Electroanal. Chem., 2017, vol. 795, pp. 17–25. https://doi.org/10.1016/j.jelechem.2017.04.040

    CAS  Article  Google Scholar 

  33. Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., and Blumenthal, R., Crit. Rev. Ther. Drug Carrier Syst., 2010, vol. 26, pp. 523–580. https://doi.org/10.1615/critrevtherdrugcarriersyst.v26.i6.10

    Article  Google Scholar 

  34. Gulati, V. and Wallace, R., Nanomaterials, 2012, vol. 2, pp. 217–250. https://doi.org/10.3390/nano2030217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Chuang, S.Y., Lin, C.H., Huang, T.H., and Fang, J.Y., Nanomaterials, 2018, vol. 8, article no. 42. https://doi.org/10.3390/nano8010042

    CAS  Article  PubMed Central  Google Scholar 

  36. Ealia, A.M. and Saravanakumar M.P., IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 263, article no. 032019. https://doi.org/10.1088/1757-899X/263/3/032019

  37. Mirahadi, M., Ghanbarzadeh, S., Ghorbani, M., and Gholizadeh, A., Ther. Delivery, 2018, vol. 9, pp. 557–569. https://doi.org/10.4155/tde-2018-0020

    CAS  Article  Google Scholar 

  38. Prabhu, R., Patravale, V., and Joshi, M.D., Int. J. Nanomed., 2015 vol. 10, pp. 1001–1018. https://doi.org/10.2147/IJN.S56932

    CAS  Article  Google Scholar 

  39. Suffredini, G., East, J.E., and Levy, L.M., Am. J. Neuroradiol., 2013, vol. 35, pp. 1246–1253. https://doi.org/10.3174/ajNoA3543

    Article  PubMed  Google Scholar 

  40. Nagavarma, B.V.N., Yadav, H.K.S. Ayaz, A., Vasudha, L.S., and Shivakumar, H.G., Asian J. Pharm. Clin. Res. 2012, vol. 5, pp. 16–23. ISSN: 09742441

  41. Bai, J., Tang, X., Zhang, Y., Lin, J., and Li, M., RSC Adv., 2018, vol. 8, pp. 1905–1908. https://doi.org/10.1039/c7ra12843f

    CAS  Article  Google Scholar 

  42. Davaran, S., Akbarzadeh, A., Nejati-Koshki, K., Alimohammadi, S., Farajpour Ghamari, M., Soghrati, M., Rezaei, A., and Khandaghi, A., J. Encapsul. Adsorpt. Sci., 2013, vol. 3, pp. 108–115. https://doi.org/10.4236/jeas.2013.34013

    CAS  Article  Google Scholar 

  43. Raskin, M.M., Schlachet, I., and Sosnik, A., Nanomedicine, 2016, vol. 11, pp. 217–233. https://doi.org/10.2217/nnm.15.191

    CAS  Article  PubMed  Google Scholar 

  44. Mamaghani, P.Y. Kaffashi, B., Salehi, R., and Davaran, S., Int. J. Polymer. Mat. Polymer. Biomater., 2015, vol. 64, pp. 55–63. https://doi.org/10.1080/00914037.2014.886236

    CAS  Article  Google Scholar 

  45. Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., and Maitra, A., J. Nanobiotechnology, 2007, vol. 5, pp. 1–18. https://doi.org/10.1186/1477-3155-5-3

    CAS  Article  Google Scholar 

  46. Sherje, A.P., Jadhav, M., Dravyakar, B.R., and Kadam, D., Int. J. Pharm., 2018, vol. 548, pp. 707–720. https://doi.org/10.1016/j.ijpharm.2018.07.030

    CAS  Article  PubMed  Google Scholar 

  47. Mignani, S., Shi, X., Ceña, V., and Majoral, J.-P., Drug Discov. Today, 2020 vol. 25, pp. 1065–1073. https://doi.org/10.1016/j.drudis.2020.03.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Szymanski, P., Markowicz, M., and Mikiciuk-Olasik, E., Nano Br. Rep. Rev., 2011, vol. 6, pp. 509–539. https://doi.org/10.1142/S1793292011002871

    CAS  Article  Google Scholar 

  49. Abbasi, E., Aval, S.F., Akbarzadeh, A., Milani, M., Nasrabadi, H.T. Joo, S.W., Hanifehpour, Y., Nejati-Koshki, K., and Pashaei-Asl, R., Nanoscale Res. Lett., 2014, vol. 9, article no. 247. https://doi.org/10.1186/1556-276X-9-247

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Mohammed, M.A., Syeda, J.T.M., Wasan, K.M., and Wasan, E.K., Pharmaceutics, 2017, vol. 9, p. 53. https://doi.org/10.3390/pharmaceutics9040053

    CAS  Article  PubMed Central  Google Scholar 

  51. Rostami, E., J. Drug Deliv. Sci. Technol., 2020 vol. 58, article no. 101813. https://doi.org/10.1016/j.jddst.2020.101813

    CAS  Article  Google Scholar 

  52. Vogel, P.D., Eur. J. Pharm. Biopharm., 2005, vol. 60, pp. 267–277. https://doi.org/10.1016/j.ejpb.2004.10.007

    CAS  Article  PubMed  Google Scholar 

  53. Gao, W. and Wang, J., Nanoscale, 2014, vol. 6, pp. 10486–10494. https://doi.org/10.1039/C4NR03124E

    CAS  Article  PubMed  Google Scholar 

  54. Tu, Y., Peng, F., and Wilson, D.A., Adv. Mater., 2017, vol. 29, article no. 1701970. https://doi.org/10.1002/adma.201701970

    CAS  Article  Google Scholar 

  55. Yamamoto, D. and Shioi, A., KONA Powder Part. J., 2015, vol. 32, pp. 2–22. https://doi.org/10.14356/kona.2015005

    Article  Google Scholar 

  56. Wan, M., Chen, H., Wang, Q., Niu, Q., Xu, P., Yu, Y., Zhu, T., Mao. Ch., and Shen, J., Nat. Commun., 2019, vol. 10, article no. 966. https://doi.org/10.1038/s41467-019-08670-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Liu, L., Gao, J., Wilson, D.A., Tu, Y., and Peng, F., Chem. An Asian J., 2019, vol. 14, pp. 2325–2335. https://doi.org/10.1002/asia.201900129

    CAS  Article  Google Scholar 

  58. Gao, W., Sattayasamitsathit, S., Manesh, K.M., Weihs, D., and Wang, J., J. Am. Chem. Soc., 2010, vol. 132, pp. 14403–14405. https://doi.org/10.1021/ja1072349

    CAS  Article  PubMed  Google Scholar 

  59. Wang, W., Li, S., Mair, L., Ahmed, S., Huang, T.J., and Mallouk, T.E., Angew. Chemie Int. Ed., 2014, vol. 53, pp. 3201–3204. https://doi.org/10.1002/anie.201309629

    CAS  Article  Google Scholar 

  60. Garcia-Gradilla, V., Orozco, J., Sattayasamitsathit, S., Soto, F., Kuralay, F., Pourazary, A., Katzenberg, A., Gao, W., Shen, Y., and Wang, J., ACS Nano, 2013, vol. 7, pp. 9232–9240. https://doi.org/10.1021/nn403851v

    CAS  Article  PubMed  Google Scholar 

  61. Kim, K., Guo, J., Liang, Z.X., Zhu, F.Q., and Fan, D.L., Nanoscale, 2016, vol. 8, pp. 10471–10490. https://doi.org/10.1039/C5NR08768F

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Wang, J., Xiong, Z., Zheng, J., Zhan, X., and Tang, J., Acc. Chem. Res., 2018, vol. 51, pp. 1957–1965. https://doi.org/10.1021/acs.accounts.8b00254

    CAS  Article  PubMed  Google Scholar 

  63. Villa K. and Pumera, M., Chem. Soc. Rev., 2019, vol. 48, pp. 4966–4978. https://doi.org/10.1039/C9CS00090A

    CAS  Article  PubMed  Google Scholar 

  64. Ellington, A.D. and Szostak, J.W., Nature, 1990, vol. 346, pp. 818–822. https://doi.org/10.1038/346818a0

    CAS  Article  PubMed  Google Scholar 

  65. Toh, S.Y., Citartan, M., Gopinath, S.C. B., and Tang, T.-H., Biosens. Bioelectron., 2015, vol. 64, pp. 392–403. https://doi.org/10.1016/j.bios.2014.09.026

    CAS  Article  PubMed  Google Scholar 

  66. Hianik, T., Porfireva, A.,Grman, I., and Evtugyn, G., Protein Pept. Lett., 2008, vol. 15, pp. 799–805. https://doi.org/10.2174/092986608785203656

  67. Hianik, T., Grman, I., and Karpisova, I., Chem. Commun., 2009, vol. 41, pp. 6303–6305. https://doi.org/10.1039/b910981a

    CAS  Article  Google Scholar 

  68. Robertson, D.L. and Joyce, G.F., Nature, 1990, vol. 344, pp. 467–468. https://doi.org/10.1038/344467a0

    CAS  Article  PubMed  Google Scholar 

  69. Viglasky, V. and Hianik, T., Gen. Physiol. Biophys., 2013, vol. 32, pp. 149–172. https://doi.org/10.4149/gpb_2013019

    CAS  Article  PubMed  Google Scholar 

  70. Jayasena, S.D., Clin. Chem., 1999, vol. 45, pp. 1628–1650. https://doi.org/10.1093/clinchem/45.9.1628

    CAS  Article  PubMed  Google Scholar 

  71. Dong, Y., Wang, Z., Wang, S., Wu, Y., Ma, Y., and Liu, J., in Aptamers for Analytical Applications: Affinity Acquisition and Method Design, Dong, Y., Ed., Weinheim: Wiley-WCH, 2018, pp. 1–25. https://doi.org/10.1002/9783527806799.ch1

  72. Gao, S., Zheng, X., Jiao, B., and Wang, L., Anal. Bioanal. Chem., 2016, vol. 408, pp. 4567–4573. https://doi.org/10.1007/s00216-016-9556-2

    CAS  Article  PubMed  Google Scholar 

  73. Chen, M., Yu, Y., Jiang, F., Zhou, J., Li, Y., Liang, C., Dang, L., Lu, A., and Zhang, G., Int. J. Mol. Sci., 2016, vol. 17, p. 2079. https://doi.org/10.3390/ijms17122079

    CAS  Article  PubMed Central  Google Scholar 

  74. Hianik, T., Ostatná, V., Sonlajtnerova, M., and Grman, I., Bioelectrochemistry, 2007. vol. 70, pp. 127–133. https://doi.org/10.1016/j.bioelechem.2006.03.012

    CAS  Article  PubMed  Google Scholar 

  75. Odeh, F., Nsairat, H., Alshaer, W., Ismail, M.A., Esawi, E., Qaqish, B., and Bawab, A.A., Molecules, 2020, vol. 25, p. 3. https://doi.org/10.3390/molecules25010003

    CAS  Article  Google Scholar 

  76. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., and Toole, J. J., Nature, 1992, vol. 355, pp. 564–566. https://doi.org/10.1038/355564a0

    CAS  Article  PubMed  Google Scholar 

  77. Ng, E.W.M. and Adamis, A.P., Ann. N.Y. Acad. Sci., 2006, vol. 1082, pp. 151–171. https://doi.org/10.1196/annals.1348.062

    CAS  Article  PubMed  Google Scholar 

  78. Pan, C., Guo, M., Nie, Z., Xiao, X., and Yao, S., Electroanalysis, 2009, vol. 21, pp. 1321–1326. https://doi.org/10.1002/elan.200804563

    CAS  Article  Google Scholar 

  79. Hoellenriegel, J., Zboralski, D., Maash, Ch., Rosin, N.Y., Wierda, W.G., Keating, M.J., Kruschinski, A., and Burger, J.A., Blood, 2014, vol. 123, pp. 1032–1039. https://doi.org/10.1182/blood-2013-03-493924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Turner, J.J., Hoos, J.S., Vonhoff, S., and Klussmann, S., Nucleic Acids Res., 2011, vol. 39, p. e147. https://doi.org/10.1093/nar/gkr776

  81. Soundararajan, S., Wang, L., Sridharan, V., Chen, W., Courtenay-Luck, N., Jones, D., Spicer, E.K., and Fernandes, D.J., Mol. Pharmacol., 2009, vol. 76, pp. 984–991. https://doi.org/10.1124/mol.109.055947

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Sefah, K., Tang, Z., Shangguan, D., Chen, H., Lopez-Colon, D., Li, Y., Parekh, P., Martin, J., Meng, L., Philips, J.A., Kim, Y.M., and Tan, W.H., Leukemia, 2009, vol. 23, pp. 235–244. https://doi.org/10.1038/leu.2008.335

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Yang, M., Jiang, G., Li, W., Qiu, K., Zhang, M., Carter, C.M., Al-Quran, S.Z., and Li, Y., J. Hematol. Oncol., 2014, vol. 7, article no. 5. https://doi.org/10.1186/1756-8722-7-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Mallikaratchy, P., Tang, Z., Kwame, S., Meng, L., Shangguan, D., and Tan, W., Mol. Cell. Proteomics, 2007, vol. 6, pp. 2230–2238. https://doi.org/10.1074/mcp.M700026-MCP200

    CAS  Article  PubMed  Google Scholar 

  85. Mallikaratchy, P.R., Ruggiero, A., Gardner, J.R., Kuryavyi, V., Maguire, W.F., Heaney, M.L., McDevitt, M.R., Patel, D.J., and Scheinberg, D.A. Nucleic Acids Res., 2011, vol. 39, pp. 2458–2469. https://doi.org/10.1093/nar/gkq996

    CAS  Article  PubMed  Google Scholar 

  86. Liu, Z., Duan, J.-H., Song, Y.-M., Ma, J., Wang, F.-D., Liu, X., and Yang, X.-D., J. Transl. Med., 2012, vol. 10, article no. 148. https://doi.org/10.1186/1479-5876-10-148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Gijs, M., Penner, G., Blackler, G.B., Impens, N.R., Baatout, S., Luxen, A., and Aerts, A.M., Pharmaceuticals, 2016, vol. 9, article no. 29. https://doi.org/10.3390/ph9020029

    CAS  Article  PubMed Central  Google Scholar 

  88. Niazi, J.H., Verma, S.K., Niazi, S., and Qureshi, A., Analyst, 2015, vol. 140, pp. 243–249. https://doi.org/10.1039/C4AN01665C

    CAS  Article  PubMed  Google Scholar 

  89. Kang, H.S., Huh, Y.M., Kim, S., and Lee, D. Bull. Korean Chem. Soc., 2009, vol. 30, pp. 1827–1831. https://doi.org/10.5012/bkcs.2009.30.8.1827

    CAS  Article  Google Scholar 

  90. Song, Y., Zhu, Z., An, Y., Zhang, W., Zhang, H., Liu, D., Yu, C., Duan, W., and Yang, C.J., Anal. Chem., 2013, vol. 85, pp. 4141–4149. https://doi.org/10.1021/ac400366b

    CAS  Article  PubMed  Google Scholar 

  91. Park, J.Y., Cho, Y.L., Chae, J.R., Moon, S.H., Cho, W.G., Choi, Y.J., and Lee, S.J., Mol. Ther.—Nucleic Acids, 2018, vol. 12, pp. 543–553. https://doi.org/10.1016/j.omtn.2018.06.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Huang, X., Zhong, J., Ren, J., Wen, D., Zhao, W., and Huan, Y., Oncol. Lett., 2019, vol. 18, pp. 264–274. https://doi.org/10.3892/ol.2019.10282

    CAS  Article  Google Scholar 

  93. Lin, G., Shang, M., Wang, Y., and Xue, M., in Proceedings of the 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering, 2015, pp. 1140–1143. https://doi.org/10.2991/meic-15.2015.259

  94. Garaiová, Z., Bolat, G., Esteban-Fernández de Ávila, B., Gong, H., Sanz del Olmo, N., Ortega, P., de la Mata, F.J., Michlewska, S., Wang, J., and Hianik, T., Clin. Oncol. Res., 2019, pp. 1–5. https://doi.org/10.31487/j.COR.2019.04.08

  95. Urmann, K., Modrejewski, J., Scheper, T., Walter, J.G., and Access, O., BioNanoMaterials, 2017, vol. 18, pp. 1–17. https://doi.org/10.1515/bnm-2016-0012

    Article  Google Scholar 

  96. Cammarata, C. R., Hughes, M.E., and Ofner, C.M., Mol. Pharm., 2015, vol. 12, pp. 783–793. https://doi.org/10.1021/mp5006118

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Cheng, J., Teply, B.A., Sherifi, I., Sung, J., Luther, G., Gu, F.X., Levy-Nissenbaum, E., Radovic-Moreno, A., Langer, R., and Farokhzad, O.C., Biomaterials, 2007, vol. 28, pp. 869–876. https://doi.org/10.1016/j.biomaterials.2006.09.047

    CAS  Article  PubMed  Google Scholar 

  98. Green, M.N., Biochem. J., 1963, vol. 89, pp. 585–591. https://doi.org/10.1042/bj0890585

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Ninomiya, K., Yamashita, T., Kawabata, S., and Shimizu, N., Ultrason. Sonochem., 2014, vol. 21, pp. 1482–1488. https://doi.org/10.1016/j.ultsonch.2013.12.023

    CAS  Article  PubMed  Google Scholar 

  100. Xue, Y., Li, X., Li, H., and Zhang, W., Nat. Commun., 2014, vol. 5, article no. 4348. https://doi.org/10.1038/ncomms5348

    CAS  Article  PubMed  Google Scholar 

  101. Zhang, X., Servos, M.R., and Liu, J., J. Am. Chem. Soc., 2012, vol. 134, pp. 7266–7269, https://doi.org/10.1021/ja3014055

    CAS  Article  PubMed  Google Scholar 

  102. Dam, D.H.M., Culver, K.S.B., and Odom, T.W., Mol. Pharm., 2014, vol. 11, pp. 580–587. https://doi.org/10.1021/mp4005657

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Baek, S.E., Lee, K.H., Park, Y.S., Oh, D.-K., Oh, S., Kim, K.-S., and Kim, D.-E., J. Control. Release, 2014, vol. 196, pp. 234–242. https://doi.org/10.1016/j.jconrel.2014.10.018

    CAS  Article  PubMed  Google Scholar 

  104. Charoenphol, P. and Bermudez, H., Mol. Pharm., 2014, vol. 11, pp. 1721–1725. https://doi.org/10.1021/mp500047b

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Kökpinar, O., Walter, J.-G., Shoham, Y., Stahl, F., and Scheper, T., Biotechnol. Bioeng., 2011, vol. 108, pp. 2371–2379. https://doi.org/10.1002/bit.23191

    CAS  Article  PubMed  Google Scholar 

  106. Lonne, M., Bolten, S., Lavrentieva, A., Stahl, F., Scheper, T., and Walter, J.-G., Biotechnol. Rep. (Amst)., 2015, vol. 8, pp. 16–23. https://doi.org/10.1016/j.btre.2015.08.006

    Article  Google Scholar 

  107. Meyer, J., Scheper, M., and Walter, T., Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 7097–7109. https://doi.org/10.1007/s00253-013-5070-z

    CAS  Article  PubMed  Google Scholar 

  108. Kardani, A., Yaghoobi, H., Alibakhshi, A., and Khatami, M., J. Cell. Physiol., 2020, vol. 235, pp. 6887–6895. https://doi.org/10.1002/jcp.29584

    CAS  Article  PubMed  Google Scholar 

  109. Wu, D., Zhao, P., Wu, L., Lin, L., Yu, G., Xu, L., and Yue, J., ACS Appl. Bio Mater., 2020, vol. 3, pp. 4590–4599. https://doi.org/10.1021/acsabm.0c00499

    CAS  Article  Google Scholar 

  110. Zhao, J., Liu, P., Ma, J., Li, D., Yang, H., Chen, W., and Jiang, Y., Int. J. Nanomed., 2019, vol. 14, pp. 9483–9496. https://doi.org/10.2147/IJN.S224160

    CAS  Article  Google Scholar 

  111. Chen, L., Liu, X., Su, B., Li, J., Jiang, L., Han, D., and Wang, S., Adv. Mater., 2011, vol. 23, pp. 4376–4380. https://doi.org/10.1002/adma.201102435

    CAS  Article  PubMed  Google Scholar 

  112. Xue, L., Lyu, Z., Luan, Y., Xiong, X., Pan, J., Chen, G., and Chen, H., Polymer Chem., 2015, vol. 6, pp. 2015–3715. https://doi.org/10.1039/c5py00247h

    Article  Google Scholar 

  113. Ou, D., Sun, D., Liang, Z., Chen, B., Lin, X., and Chen, Z., Sens. Act. B Chem., 2019, vol. 285, pp. 398–404. https://doi.org/10.1016/j.snb.2019.01.079

    CAS  Article  Google Scholar 

  114. Yang, J., Palla, M., Bosco, F.G., Rindzevicius, T., Alstrøm, T.S., Schmidt, M.S, Boisen, A., Ju, J., and Lin, Q., ACS Nano, vol. 7, pp. 5350–5359. https://doi.org/10.1021/nn401199k

  115. So, H.-M., Won, K., Kim, Y.H., Kim, B.-K., Ryu, B.H., Na, P.S., Kim, H., and Lee, J.-O., J. Am. Chem. Soc., 2005, vol. 127, pp. 11906–11907. https://doi.org/10.1021/ja053094r

    CAS  Article  PubMed  Google Scholar 

  116. Yoon, H., Kim, J., Lee, N., Kim, B., and Jang, J., ChemBioChem, 2008, vol. 742, pp. 634–641. https://doi.org/10.1002/cbic.200700660

    CAS  Article  Google Scholar 

  117. Zhou, J., and Rossi, J. J., Mol. Ther. Nucleic Acids, 2014, vol. 3, pp. 1–17. https://doi.org/10.1038/mtna.2014.21

    CAS  Article  Google Scholar 

  118. Baneshi, M., Dadfarnia, S., Shabani, A.M.H., Sabbagh, S.K., Haghgoo, S., and Bardania, H., Int. J. Pharm., 2019, vol. 564, pp. 145–152. https://doi.org/10.1016/j.ijpharm.2019.04.025

    CAS  Article  PubMed  Google Scholar 

  119. Hong, E.J., Kim, Y., Choi, D.G., and Shim, M.S., J. Ind. Eng. Chem., 2018, vol. 67, pp. 429–436. https://doi.org/10.1016/j.jiec.2018.07.017

    CAS  Article  Google Scholar 

  120. Kolovskaya, O.S., Zamay, T.N., Belyanina, I.V., Gargaun, A., Berezovski, M.V., Kichailo, A.S., Dubynina, A.V., Sokolov, A.E., Zamay, G.S., Glazyrin, Y.E., Zamay, S., Ivachenko, T., Chanchikova, N., Tokarev, N., Shepelevich, N., Ozerskaya, A., Badrin, E., Belugin, K., Belkin, S., Zabluda, V., Gargaun, A., Berezovski, M.V., and Kichailo, A.S. Mol. Ther. Nucleic Acid, 2017, vol. 9, pp. 12–21. https://doi.org/10.1016/j.omtn.2017.08.007

    CAS  Article  Google Scholar 

  121. Duan, T., Xu, Z., Sun, F., Wang, Y., Zhang, J., Luo, C., and Wang, M., Biomed. Pharmacother., 2019, vol. 117, article no. 109121. https://doi.org/10.1016/j.biopha.2019.109121

    CAS  Article  PubMed  Google Scholar 

  122. Saravanakumar, K., Hu, X., Shanmugam, S., Chelliah, R., Sekar, P., Oh, D.-H., Vijayakumar, S., Kathiresan, K., and Wang, M.-H., Arch. Biochem. Biophys., 2019, vol. 671, pp. 143–151. https://doi.org/10.1016/j.abb.2019.07.004

    CAS  Article  PubMed  Google Scholar 

  123. Rață, D.M., Cadinoiu, A.N., Atanase, L.I., Bacaita, S.E., Michalache, C., Daraba, O.-M., Ghergel, D., and Popa, M., Mater. Sci. Eng. C, 2019, vol. 103, article no. 109828. https://doi.org/10.1016/j.msec.2019.109828

    CAS  Article  Google Scholar 

  124. Chen, Z., Tai, Z., Gu, F., Hu, C., Zhu, Q., and Gao, S., Eur. J. Pharm. Biopharm., 2016, vol. 107, pp. 130–141. https://doi.org/10.1016/j.ejpb.2016.07.007

    CAS  Article  PubMed  Google Scholar 

  125. Li, N., Xiang, M.-H., Liu, J.-W., Tang, H., and Jiang, J.-H., Anal. Chem., 2018, vol. 90, pp. 12951–12958. https://doi.org/10.1021/acs.analchem.8b03253

    CAS  Article  PubMed  Google Scholar 

  126. Fletcher, N.L., Houston, Z.H., Simpson, J.D., Veedu, R.N., and Thurecht, K.J., Chem. Commun, 2018, vol. 54, pp. 11538–11541. https://doi.org/10.1039/c8cc05831h

    CAS  Article  Google Scholar 

  127. Wang, J., Dong, R., Wu, H., Cai, Y., and Ren, B., Nano-Micro Lett., 2020, vol. 12, article no. 11. https://doi.org/10.1007/s40820-019-0350-5

    CAS  Article  Google Scholar 

  128. Yuan, K., Jiang, Z., Jurado-Sánchez, B., and Escarpa, A., Chem. Eur. J., 2020, vol. 26, pp. 2309–2326. https://doi.org/10.1002/chem.201903475

    CAS  Article  PubMed  Google Scholar 

  129. Sonntag, L., Simmchen, J., and Magdanz, V., Molecules, 2019, vol. 24, no. 18, article no. 3410. https://doi.org/10.3390/molecules24183410

    CAS  Article  PubMed Central  Google Scholar 

  130. Kagan, D., Laocharoensuk, R., Zimmerman, M., Clawson, C., Balasubramanian, S., Kang, D., Bishop, D., Sattayasamitsathit, S., Zhang, L., and Wang, J., Small, 2010, vol. 6, pp. 2741–2747. https://doi.org/10.1002/smll.201001257

    CAS  Article  PubMed  Google Scholar 

  131. Tabrizi, M.A., Shamsipur, M., Saber, R., and Sarkar, S., Biosens. Bioelectron., 2018, vol. 110, pp. 141–146. https://doi.org/10.1016/j.bios.2018.03.034

    CAS  Article  Google Scholar 

  132. Huang, J.-L., Chen, H.-Z., and Gao, X.-L., J. Drug Target, 2018, vol. 26, pp. 398–406. https://doi.org/10.1080/1061186X.2017.1419360

    CAS  Article  PubMed  Google Scholar 

  133. Burakova, E.A., Derzhalova, A.Sh., Chelobanov, B.P., Fokina, A.A., and Stetsenko, D.A., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 662–668. https://doi.org/10.1134/S1068162019060153

    CAS  Article  Google Scholar 

  134. Dyudeeva, E.S., Kupryushkin, M.S., Lomzov, A.A., Pyshnaya, I.A., and D. V. Pyshnyi, D.V., Russ. J. Biorg. Chem., 2019, vol. 45, pp. 709–718. https://doi.org/10.1134/S1068162019060098

    CAS  Article  Google Scholar 

  135. Chudinov, A.V., Shershov, V.E., Pavlov, A.S., Volkova, O.S., Kuznetsova, V.E., Zasedatelev, A.S., and Lapa, S.A., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 856–858. https://doi.org/10.1134/S1068162020050064

    CAS  Article  Google Scholar 

  136. Odeh, F., Nsairat, H., Alshaer, W., Ismail, M.A., Esawi, E., Quaqish, B., Al Bavab, A., and Ismail, S.I., Molecules, 2020, vol. 25, article no. 3. https://doi.org/10.3390/molecules25010003

    CAS  Article  Google Scholar 

Download references

Funding

This work has been supported by Science Grant Agency VEGA, grant no. 1/0419/20 and by Slovak Research and Development Agency, APVV (Project nos. SK-PL-18-0080 and SK-BY-RD-19-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hianik.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and doesnot contain any studies involving animals performed by any of the author.

Conflict of Interests

The authors report no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oravczová, V., Garaiová, Z. & Hianik, T. Nanoparticles and Nanomotors Modified by Nucleic Acids Aptamers for Targeted Drug Delivery. Russ J Bioorg Chem 47, 344–366 (2021). https://doi.org/10.1134/S1068162021020187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021020187

Keywords:

  • nanoparticles
  • nanomotors
  • liposomes
  • dendrimers
  • aptamers
  • targeted drug delivery