Skip to main content

Interaction of Lipophilic Conjugates of Modified siRNAs with Hematopoietic Cells In Vitro and In Vivo

Abstract

Delivery of siRNAs to blood cells is one of the most difficult tasks since there are no efficient and nontoxic methods of delivering nucleic acids to these cells in vivo. Conjugation of siRNAs with targeting or lipophilic transport molecules is one of the most promising approaches to solving this problem, since it can provide efficient accumulation without toxic side effects. Therefore, in this work, we conjugated an siRNA molecule with lipophilic molecules for its delivery to PBMC (primary blood mononuclear cells) and whole blood cells. We showed that among the studied molecules, cholesterol is the most promising agent for this purpose. Further screening of conjugates with respect to the length of the linker connecting the siRNA and cholesterol showed that a linker containing six carbon atoms is optimal for the most efficient delivery of the siRNA into human cells in experiments in whole blood. The selected siRNA–cholesterol conjugate also efficiently accumulated in mouse blood cells and splenocytes upon intravenous injection.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Setten, R.L., Rossi, J.J., and Han, S.-P., Nat. Rev. Drug Discov., 2019, vol. 18, pp. 421–446. https://doi.org/10.1038/s41573-019-0017-4

    CAS  Article  PubMed  Google Scholar 

  2. Chernikov, I.V., Vlassov, V.V., and Chernolovskaya, E.L., Front. Pharmacol., 2019, vol. 10, pp. 1–25. https://doi.org/10.3389/fphar.2019.00444

    CAS  Article  Google Scholar 

  3. Kolosenko, I., Edsbäcker, E., Björklund, A.-C., Hamil, A.S., Goroshchuk, O., Grander, D., Dowdy, S.F., and Palm-Apergi, C., J. Control. Release, 2017, vol. 261, pp. 199–206. https://doi.org/10.1016/j.jconrel.2017.07.002

    CAS  Article  PubMed  Google Scholar 

  4. Benizri, S., Gissot, A., Martin, A., Vialet, B., Grinstaff, M.W., and Barthelemy, P., Bioconjug. Chem., 2019, vol. 30, pp. 366–383. https://doi.org/10.1021/acs.bioconjchem.8b00761

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Shinkai, Y., Kashihara, S., Minematsu, G., Fujii, H., Naemura, M., Kotake, Y., Morita, Y., Ohnuki, K., Fokina, A.A., Stetsenko, D.A., Filichev, V.V., and Fujii, M., Nucleic Acid Ther., 2017, vol. 27, pp. 168–175. https://doi.org/10.1089/nat.2016.0647

    CAS  Article  PubMed  Google Scholar 

  6. Landry, B., Valencia-Serna, J., Gul-Uludag, H., Jiang, X., Janowska-Wieczorek, A., Brandwein, J., and Uludag, H., Mol. Ther. Nucleic Acids, 2015, vol. 4. e240. https://doi.org/10.1038/mtna.2015.13

    CAS  Article  PubMed  Google Scholar 

  7. Wang, Y.H., Motoji, T., Motomura, S., Shiozaki, H., Tsuruo, T., and Mizoguchi, H., Eur. J. Haematol., 1997, vol. 58, pp. 186–194. https://doi.org/10.1111/j.1600-0609.1997.tb00946.x

    CAS  Article  PubMed  Google Scholar 

  8. Petrova, N.S., Chernikov, I.V., Meschaninova, M.I., Dovydenko, I.S., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Nucleic Acids Res., 2012, vol. 40, pp. 2330–2344. https://doi.org/10.1093/nar/gkr1002

    CAS  Article  PubMed  Google Scholar 

  9. Chernikov, I.V., Meschaninova, M.I., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., J. Hematol. Oncol. Res., 2016, vol. 2, p. 13. https://doi.org/10.14302/issn.2372-6601.jhor-15-822

    Article  Google Scholar 

  10. Chernikov, I.V., Gladkikh, D.V., Meschaninova, M.I., Karelina, U.A., Ven’yaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Nucleic Acid Ther., 2019, vol. 29, pp. 33–43. https://doi.org/10.1089/nat.2018.0745

    CAS  Article  PubMed  Google Scholar 

  11. Volkov, A.A., Kruglova, N.S., Meschaninova, M.I., Venyaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Oligonucleotides, 2009, vol. 19, pp. 191–202. https://doi.org/10.1089/oli.2008.0162

    CAS  Article  PubMed  Google Scholar 

  12. Logashenko, E.B., Chernolovskaya, E.L., Vladimirova, A.V., Repkova, M.N., Ven’yaminova, A.G., and Vlasov, V.V., Dokl. Biochem. Biophys, 2002, vol. 386, pp. 296–297. https://doi.org/10.1023/a:1020732216541

    Article  PubMed  Google Scholar 

  13. Logashenko, E.B., Vladimirova, A.V., Repkova, M.N., Venyaminova, A.G., Chernolovskaya, E.L., and Vlassov, V.V., Nucleosides Nucleotides Nucleic Acids, 2004, vol. 23, pp. 861–866. https://doi.org/10.1081/NCN-200026032

    CAS  Article  PubMed  Google Scholar 

  14. Logashenko, E.B., Vladimirova, A.V., Volkov, A.A., Repkova, M.N., Ven’yaminova, A.G., Zenkova, M.A., Chernolovskaya, E.L., and Vlassov, V.V., Russ. Chem. Bull., 2006, vol. 55, pp. 1275–1283. https://doi.org/10.1007/s11172-006-0411-z

    CAS  Article  Google Scholar 

  15. Chernikov, I.V., Karelina, U.A., Meschaninova, M.I., Ven’yaminova, A.G., Zenkova, M.A., Vlassov, V.V., and Chernolovskaya, E.L., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 766–773. https://doi.org/10.1134/S1068162019060128

    CAS  Article  Google Scholar 

  16. Ly, S., Navaroli, D.M., Didiot, M.-C., Cardia, J., Pandarinathan, L., Alterman, J.F., Fogarty, K., Standley, C., Lifshitz, L.M., Bellve, K.D., Prot, M., Echeverria, D., Corvera, S., and Khvorova, A., Nucleic Acids Res., 2017, vol. 45, pp. 15–25. https://doi.org/10.1093/nar/gkw1005

    CAS  Article  PubMed  Google Scholar 

  17. Osborn, M.F., Coles, A.H., Biscans, A., Haraszti, R.A., Roux, L., Davis, S., Ly, S., Echeverria, D., Hassler, M.R., Godinho, B.M.D., Nikan, M., and Khvorova, A., Nucleic Acids Res., 2019, vol. 47, pp. 1070–1081. https://doi.org/10.1093/nar/gky1232

    CAS  Article  PubMed  Google Scholar 

  18. Agrawal, N., Toner, M., and Irimia, D., Lab. Chip, vol. 8, pp. 2054–2061. https://doi.org/10.1039/B813588F

  19. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R.K., Racie, T., Rajeev, K.G., Rohl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., and Vornlocher, H.-P., Nature, 2004, vol. 432, pp. 173–178. https://doi.org/10.1038/nature03121

    Article  PubMed  Google Scholar 

  20. Nishina, K., Unno, T., Uno, Y., Kubodera, T., Kanouchi, T., Mizusawa, H., and Yokota, T., Mol. Ther., 2008, vol. 16, pp. 734–740. https://doi.org/10.1038/mt.2008.14

    CAS  Article  PubMed  Google Scholar 

  21. McNamara, J.O., Andrechek, E.R., Wang, Y., Viles, K.D., Rempel, R.E., Gilboa, E., Sullenger, B.A., and Giangrande, P.H., Nat. Biotechnol., 2006, vol. 24, pp. 1005–1015. https://doi.org/10.1038/nbt1223

    CAS  Article  PubMed  Google Scholar 

  22. Xia, C.-F., Boado, R.J., and Pardridge, W.M., Mol. Pharm., 2009, vol. 6, pp. 747–751. https://doi.org/10.1021/mp800194y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Moschos, S.A., Jones, S.W., Perry, M.M., Williams, A.E., Erjefalt, J.S., Turner, J.J., Barnes, P.J., Sproat, B.S., Gait, M.J., and Lindsay, M.A., Bioconjug. Chem., 2007, vol. 18, pp. 1450–1459. https://doi.org/10.1021/bc070077d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Nakase, I., Tanaka, G., and Futaki, S., Mol. Biosyst., 2013, vol. 9, pp. 855–861. https://doi.org/10.1039/c2mb25467k

    CAS  Article  PubMed  Google Scholar 

  25. Khatri, N., Rathi, M., Baradia, D., Trehan, S., and Misra, A., Crit. Rev. Ther. Drug Carrier Syst., 2012, vol. 29, pp. 487–527. https://doi.org/10.1615/critrevtherdrugcarriersyst.v29.i6.20

    CAS  Article  PubMed  Google Scholar 

  26. Nechaev, S., Gao, C., Moreira, D., Swiderski, P., Jozwiak, A., Kowolik, C.M., Zhou, J., Armstrong, B., Raubitschek, A., Rossi, J.J., and Kortylewski, M., J. Control. Release, 2013, vol. 170, pp. 307–315. https://doi.org/10.1016/j.jconrel.2013.06.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Q., Hossain, D.M.S., Nechaev, S., Kozlowska, A., Zhang, W., Liu, Y., Kowolik, C.M., Swiderski, P., Rossi, J.J., Forman, S., Pal, S., Bhatia, R., Raubitschek, A., Yu, H., and Kortylewski, M., Blood, 2013, vol. 121, pp. 1304–1315. https://doi.org/10.1182/blood-2012-07-442590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Proudnikov, D. and Mirzabekov, A., Nucleic Acids Res., 1996, vol. 24, pp. 4535–4542. https://doi.org/10.1093/nar/24.22.4535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-04-00251) and the Program of Fundamental Research of State Academies of Sciences 2013–2020, project no. AAAA-A17-117020210024-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Chernolovskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Experiments on animals were carried out in accordance with the protocol approved by the Inter-Institutional Commission on Bioethics of the Siberian Branch of the Russian Academy of Sciences (Protocol No. 22.11 dated May 30, 2014) and recommendations for the proper use and care of laboratory animals (European Communities Council Directive 86/609 / CEE).

Conflict of Interests

The authors declare they have no conflicts of interests.

Additional information

Translated by N. Onishchenko

Abbreviations: A, Alexa Fluor-488; Ch, cholesterol; F, fluorescein; Lf, Lipofectamine; Lt, lithocholic acid, PBMC, primary blood mononuclear cells; siRNA, small interfering RNA; Toco, α-tocopherol.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chernikov, I.V., Meschaninova, M.I., Gladkikh, D.V. et al. Interaction of Lipophilic Conjugates of Modified siRNAs with Hematopoietic Cells In Vitro and In Vivo. Russ J Bioorg Chem 47, 399–410 (2021). https://doi.org/10.1134/S1068162021020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021020072

Keywords:

  • siRNA
  • chemical modification
  • cholesterol
  • lipophilic conjugates
  • hematopoietic cells
  • delivery to cells