Skip to main content

Norfloxacin Analogues: Drug Likeness, Synthesis, Biological, and Molecular Docking Assessment

Abstract

Norfloxacin (I) and its 1,3,4-oxadiazole, thiazolidin-4-one, 1,3,4-oxadiazoline, 1,2,4-triazole, Schiff’s base, hydrazide and 1,3,4-thiadiazole analogues (IIVIII), were screened for drug-likeness using molinspiration chemoinformatics software, and found that only (IIV) and (VI), were possessed the bioactivity score in the zone of an active drug molecule. Then the analogues (IIVIII) lead to the synthesis and characterization by spectroscopic methods such as FT-IR, NMR (1H and 13C), and Mass spectroscopy, etc. Moreover, the antimicrobial assessment was performed using the methods of disc diffusion and serial dilutions and the findings revealed that the analogue (VIVIII) have been found to express better antibacterial effects than the reference drug norfloxacin (I). The MTT assay was also carried out to assess the toxic effects of norfloxacin and its analogues (IVIII), against HepG2 cells and found to be less toxic, with percent viability of the cells in the range of 71–75% at 100 µM. Molecular docking studies were performed using AutoDock Tools-1.5.6, against the receptor GlcN-6P (2VF5), to estimate the extent of hydrogen bonding and binding affinities. Hydrogen bonding was not observed in accordance with the experimental findings, while good binding affinities were observed in the range of –5.6 to 7.7 kcal/mole.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Levin-Reisman, I., Ronin, I., Gefen, O., Braniss, I., Shoresh, N., Balaban, N.Q., Science, 2017, vol. 355, pp. 826–830. https://doi.org/10.1126/science.aaj2191

    CAS  Article  PubMed  Google Scholar 

  2. Brown, E.D. and Wright, G.D., Nature, 2016, vol. 529, 336–343. https://doi.org/10.1038/nature17042

    CAS  Article  PubMed  Google Scholar 

  3. Crumplin, G.C. and Odell, M., Drugs, 1987, vol. 34, pp. 1–8. https://doi.org/10.2165/00003495-198700341-00002

    CAS  Article  PubMed  Google Scholar 

  4. Sun, Z., Xu, Y., Sun, Y., Liu, Y., Zhang, X., Huang, H., and Li, C., Microb. Drug Resist., 2014, vol. 20, pp. 525–532. https://doi.org/10.1089/mdr.2013.0171

    CAS  Article  PubMed  Google Scholar 

  5. Owens, R.C. and Ambrose, P.G., Clin. Infect. Dis., 2005, vol. 41, no. 2, pp. S144–S157. https://doi.org/10.1086/428055

    CAS  Article  PubMed  Google Scholar 

  6. De, S.A. and De, S.G., Curr. Med. Chem., 2001, vol. 8, no. 4, pp. 371–384. https://doi.org/10.2174/0929867013373435

    Article  Google Scholar 

  7. Liang-Liang, W., Narsaiah, B., Rammohan, R.Y.B., Shao-Lin, Z., and Cheng-He, Z., Eur. J. Med. Chem., 2019, vol. 167, pp. 105–123. https://doi.org/10.1016/j.ejmech.2019.01.072

  8. Sunduru, N., Gupta, L., Chauhan, K., Mishra, N.N., Shukla, P.K., and Chauhan, P.M.S., Eur. J. Med. Chem., 2011, vol. 46, no. 4, pp. 1232–1244. https://doi.org/10.1016/j.ejmech.2011.01.044

    CAS  Article  PubMed  Google Scholar 

  9. Bakhotmah, D.A., Abdul-Rahman, R.M., Makki, M.S., El-Zahabi, M.A., and Suliman, M., ISRN Org. Chem., 2011, pp. 1–11. https://doi.org/10.5402/2011/184754

  10. Pandeya, S.N., Sriram, D., Nath, G., Clercq, E.D., Eur. J. Med. Chem., 2000, vol. 35, no. 2, pp. 249–255. https://doi.org/10.1016/S0223-5234(00)00125-2

    CAS  Article  PubMed  Google Scholar 

  11. Nieto, M.J., Alovero, F.L., Manzo, R.H., Mazzieri, M.R., Eur. J. Med. Chem., 2005, vol. 40, no. 4, pp. 361–369. https://doi.org/10.1016/j.ejmech.2004.11.008

    CAS  Article  PubMed  Google Scholar 

  12. Abdel-Aziz, A.M., El-Azab A.S., Alanazi, A.M., Asiri Y.A., Al-Suwaidan I.A., Maarouf, A.R., Ayyad, R.R., Shawer, T.Z., J. Enzyme Inhib. Med. Chem., 2016, vol. 31, no. 5, pp. 796–809.

    CAS  Article  PubMed  Google Scholar 

  13. Yadav, V. and Talwar, P., Biomed. Pharmacother., 2019, vol. 111, pp. 934–946. https://doi.org/10.1016/j.biopha.2018.12.119

    CAS  Article  PubMed  Google Scholar 

  14. Pieczonka, A.M., Strzelczyk, A., Sadowska, B., Mlostoń, G., and Stączek, P., Eur. J. Med. Chem., 2013, vol. 64, pp. 389–395. https://doi.org/10.1016/j.ejmech.2013.04.023

    CAS  Article  PubMed  Google Scholar 

  15. Kothayer, H., Spencer, S.M., Tripathi, K., Westwell, A.D., and Palle, K., Bioorg. Med. Chem. Lett., 2016, vol. 26, no. 8, pp. 2030–2034. https://doi.org/10.1016/j.bmcl.2016.02.085

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Barbosa, V.A., Formagio, A.S.N., Savariz, F.C., Foglio, M.A., Spindola, H.M., Carvalho, J.E. de Meyer, E., and Sarragiotto, M.H., Bioorg. Med. Chem. Lett., 2011, vol. 19, no. 21, pp. 6400–6408. https://doi.org/10.1016/j.bmc.2011.08.059

    CAS  Article  Google Scholar 

  17. Taha, M., Sultan, S., Azlan, M., Shah, S.A.A., Jamil, W., Yeap, S.K., Imran, S., Akhtar, M.N., Zareen, S., Ismail, N.H., and Ali, M., New Horizons Transl. Med., 2017, vol. 4, nos. 1–4, pp. 23–30. https://doi.org/10.1016/j.nhtm.2017.08.002

    Article  Google Scholar 

  18. Telvekar, V.N., Belubbi, A., Bairwa, V.K., and Satardekar, K., Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 6, pp. 2343–2346. https://doi.org/10.1016/j.bmcl.2012.01.067

    CAS  Article  PubMed  Google Scholar 

  19. Süleymanoğlu, N., Demir, E.E., Direkel, Ş., and Ünver, Y., J. Mol. Struct., 2020, vol. 1218, p. 128522. https://doi.org/10.1016/j.molstruc.2020.128522

    CAS  Article  Google Scholar 

  20. Taha, R.H., El-Shafiey, Z.A., Salman, A.A., El-Fakharany, E.M., and Mansour, M.M., J. Mol. Struct., 2019, vol. 1181, pp. 536–545. https://doi.org/10.1016/j.molstruc.2018.12.055

    CAS  Article  Google Scholar 

  21. Liang, C., Xia, J., Lei, D., Li, X., Yao, Q., and Gao, J., Eur. J. Med. Chem., 2014, vol. 74, pp. 742–750. https://doi.org/10.1016/j.ejmech.2013.04.040

    CAS  Article  PubMed  Google Scholar 

  22. Zulfiqar, A., Ahmed, D., Fatima, R., and Yousuf, S., J. Mol. Struct., 2020, vol. 1202, p. 127263. https://doi.org/10.1016/j.molstruc.2019.127263

    CAS  Article  Google Scholar 

  23. Bhandari, S.V., Bothara, K.G., Raut, M.K., Patil, A.A., Sarkate, A.P., and Mokale, V.J., Bioorg. Med. Chem., 2008, vol. 16, no. 4, pp. 1822–1831. https://doi.org/10.1016/j.bmc.2007.11.014

    CAS  Article  PubMed  Google Scholar 

  24. Muğlu, H., Yakan, H., and Shouaib, H.A., J. Mol. Struct., 2020, vol. 1203, p. 127470. https://doi.org/10.1016/j.molstruc.2019.127470

    CAS  Article  Google Scholar 

  25. Perupogu, N., Sharif, S.K., and Ramachandran, D., Chem. Data Collect., 2020, vol. 28, p. 100444. https://doi.org/10.1016/j.cdc.2020.100444

    CAS  Article  Google Scholar 

  26. Zhang J., Wang X., Yang J., Guo L., Wang X., Song B., Dong W., and Wang W., Eur. J. Med. Chem., 2020, vol. 186, p. 111897. https://doi.org/10.1016/j.ejmech.2019.111897

    CAS  Article  PubMed  Google Scholar 

  27. Jakovljević K., Joksović M.D., Botta B., Jovanović L. S., Avdović E., Marković Z., Mihailović, V., Andrić M., Trifunović S., Marković V., Comptes Rendus Chimie, 2019, vol. 22, no. 8, pp. 585–598. https://doi.org/10.1016/j.crci.2019.06.001

    CAS  Article  Google Scholar 

  28. Alegaon S.G., Hirpara M.B., Alagawadi K.R., Hullatti K.K., Kashniyal K., Bioorg. Med. Chem. Lett., 2014, vol. 24, no. 22, pp. 5324–5329. https://doi.org/10.1016/j.bmcl.2014.08.062

    CAS  Article  PubMed  Google Scholar 

  29. Chen, C.-J., Song, B.-A., Yang, S., Xu G.-F., Bhadury, P.S., Jin, L.-H., Hu, D.-Y., Li, Q.-Z., Liu, F., Xue, W., Lu, P., and Chen, Z., Bioorg. Med. Chem., 2007, vol. 15, no. 12, pp. 3981–3989. https://doi.org/10.1016/j.bmc.2007.04.014

    CAS  Article  PubMed  Google Scholar 

  30. Maddila, S., Nagaraju, K., and Jonnalagadda, S.B., Chem. Data Collect., 2020, vol. 28, p. 100486. https://doi.org/10.1016/j.cdc.2020.100486

    CAS  Article  Google Scholar 

  31. Satpaeva, Z.B., Shulgau, Z.T., Akhmetova, S.B. Nurkenov, O.A., Fazylov, S.D., and Burkeev, M.Zh., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 537–541. https://doi.org/10.1134/S1068162020040172

    CAS  Article  Google Scholar 

  32. Ding, Z., Ni T., Xie F., Hao Y., Yu, S., Chai, X., Jin, Y., Wang, T., Jiang, Y., and Zhang, D., Bioorg. Med. Chem. Lett., 2020, vol. 30, no. 4, p. 126951. https://doi.org/10.1016/j.bmcl.2020.126951

    CAS  Article  PubMed  Google Scholar 

  33. Gao, F., Wang, T., Xiao, J., and Huang, G., Eur. J. Med. Chem., 2019, vol. 173, pp. 274–281. https://doi.org/10.1016/j.ejmech.2019.04.043

    CAS  Article  PubMed  Google Scholar 

  34. Xu, Z., Zhao, S.-J., and Liu, Y., Eur. J. Med. Chem., 2019, vol. 183, p. 111700. https://doi.org/10.1016/j.ejmech.2019.111700

    CAS  Article  PubMed  Google Scholar 

  35. Almashal, F.A.K., Al-Hujaj, H.H., Jassem, A.M., and Al-Masoudi, N., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 360–370. https://doi.org/10.1134/S1068162020030024

    Article  Google Scholar 

  36. Yamada, M., Takahashi, T., Hasegawa, M., Matsumura, M., Ono, K., Fujimoto, R., Kitamura, Y., Murata, Y., Kakusawa, N., Tanaka, M., Obata, T., Fujiwara, Y., and Yasuike, S., Bioorg. Med. Chem. Lett., 2018, vol. 28, no. 2, pp. 152–154. https://doi.org/10.1016/j.bmcl.2017.11.038

    CAS  Article  PubMed  Google Scholar 

  37. Patil, P.S., Kasare, S.L., Haval, N.B., Khedkar, V.M., Dixit, P.P., Rekha, E.M., Sriram, D., and Haval, K.P., Bioorg. Med. Chem. Lett., 2020, vol. 30, p. 127434. https://doi.org/10.1016/j.bmcl.2020.127434

    CAS  Article  PubMed  Google Scholar 

  38. Tozkoparan, B., Küpeli, E., Yeşilada, E., and Ertan, M., Bioorg. Med. Chem., 2007, vol. 15, no. 4, pp. 1808–1814. https://doi.org/10.1016/j.bmc.2006.11.029

    CAS  Article  PubMed  Google Scholar 

  39. Geetha, B.M., Brinda, K.N., Achar, G., Małecki J. G., Alwarsamy, M., Betageri, V. S., and Budagumpi, S., J. Mol. Liquids, 2020, vol. 301, p. 112352. https://doi.org/10.1016/j.molliq.2019.112352

    CAS  Article  Google Scholar 

  40. Chu, X.-M., Wang, C., Wang, W.-L., Liang, L.-L., Liu, W., Gong, K.-K., and Sun, K.-L., Eur. J. Med. Chem., 2019, vol. 166, pp. 206–223. https://doi.org/10.1016/j.ejmech.2019.01.047

    CAS  Article  PubMed  Google Scholar 

  41. Gobinath, M., Subramanian, N., Alagarsamy, V., Nivedhitha, S., and Solomon, V.R., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 403–408. https://doi.org/10.1134/S1068162020030085

    CAS  Article  Google Scholar 

  42. Elkanzi, N.A.A. and Hrichi, H., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 715–725. https://doi.org/10.1134/S1068162020050076

    CAS  Article  Google Scholar 

  43. Nayak, S.G. and Poojary, B., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 97–106. https://doi.org/10.1134/S1068162020010069

    CAS  Article  Google Scholar 

  44. Chortani, S., Edziri, H., Manachou, M., Al-Ghamdi, Y.O., Almalki, S.G., Alqurashi, Y.E., Jannet, H.B., and Romdhane, A., J. Mol. Struct., 2020, vol. 1217, p. 128357. https://doi.org/10.1016/j.molstruc.2020.128357

    CAS  Article  Google Scholar 

  45. Gan, X., Hu, D., Chen, Z., Wang, Y., and Song, B., Bioorg. Med. Chem. Lett., 2017, vol. 27, no. 18, pp. 4298–4301. https://doi.org/10.1016/j.bmcl.2017.08.038

    CAS  Article  PubMed  Google Scholar 

  46. Guo, Y., Xu, T., Bao, C., Liu, Z., Fan, J., Yang, R., and Qin, S., Eur. J. Pharm. Sci., 2019, vol. 136, p. 104966. https://doi.org/10.1016/j.ejps.2019.104966

    CAS  Article  PubMed  Google Scholar 

  47. Shi, J., Luo, N., Ding, M., and Bao, X., Chin. Chem. Lett., 2020, vol. 31, no. 2, pp. 434–438. https://doi.org/10.1016/j.cclet.2019.06.037

    CAS  Article  Google Scholar 

  48. Sauer, A.C., Leal, J.G., Stefanello, S.T., Leite, M.T.B., Souza, M.B., Soares, F.A.A., Rodrigues, O.E.D., and Dornelles, L., Tetrahedron Lett., 2017, vol. 58, no. 1, pp. 87–91. https://doi.org/10.1016/j.tetlet.2016.11.106

    CAS  Article  Google Scholar 

  49. Shaykoon, M.S., Marzouk, A.A., Soltan, O.M., Wanas, A.S., Radwan, M.M., Gouda, A.M., Youssif, B.G.M., and Abdel-Aziz, M., Bioorg. Chem., 2020, vol. 100, p. 103933. https://doi.org/10.1016/j.bioorg.2020.103933

    CAS  Article  PubMed  Google Scholar 

  50. Bhutani, R., Pathak, D.P., Kapoor, G., Husain, A., and Iqbal, M.A., Bioorg. Chem., 2019, vol. 83, pp. 6–19. https://doi.org/10.1016/j.bioorg.2018.10.025

    CAS  Article  PubMed  Google Scholar 

  51. Verma, G., Chashoo, G., Ali, A., Khan, M.F., Akhtar, W., Ali, I., Akhtar, M., Alam, M.M., and Shaquiquzzaman, M., Bioorg. Chem., 2018, vol. 77, pp. 106–124. https://doi.org/10.1016/j.bioorg.2018.01.007

    CAS  Article  PubMed  Google Scholar 

  52. Bondock, S., Adel, S., Etman, H.A., and Badria, F.A., Eur. J. Med. Chem., 2012, vol. 48, pp. 192–199. https://doi.org/10.1016/j.ejmech.2011.12.013

    CAS  Article  PubMed  Google Scholar 

  53. Ningegowda, R., Chandrashekharappa, S., Singh, V., Mohanlall, V., and Venugopala, K.N., Chem. Data Collect., 2020, vol. 28, p. 100431. https://doi.org/10.1016/j.cdc.2020.100431

    CAS  Article  Google Scholar 

  54. Rollas, S., Gulerman, N., and Erdeniz, H., II Farmaco, 2002, vol. 57, no. 2, pp. 171–174. https://doi.org/10.1016/S0014-827X(01)01192-2

  55. Chaaban, I., Khawass, E.S.M.E., Razik, H.A.A.E., Salamouni, N.S.E., Redondo-Horcajo M., Barasoain I., Díaz, J.F., Yli-Kauhaluoma J., and Moreira, V.M., Eur. J. Med. Chem., 2014, vol. 87, pp. 805–813. https://doi.org/10.1016/j.ejmech.2014.10.015

    CAS  Article  PubMed  Google Scholar 

  56. Gopinatha, V. K., Ray, U., Mantelingu, K., Raghavan, S.C., and Rangappa, K.S., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 837–844. https://doi.org/10.1134/S106816202005009X

    Article  Google Scholar 

  57. Hu, Y., Lu, X., Chen, K., Yan, R., Li, Q.-S., and Zhu, H.-L., Bioorg. Med. Chem., 2012, vol. 20, no. 2, pp. 903–909. https://doi.org/10.1016/j.bmc.2011.11.057

    CAS  Article  PubMed  Google Scholar 

  58. El-Emam, A.A., Al-Deeb, O.A., Al-Omar, M., and Lehmann, J., Bioorg. Med. Chem., 2004, vol. 12, no. 19, pp. 5107–5113. https://doi.org/10.1016/j.bmc.2004.07.033

    CAS  Article  PubMed  Google Scholar 

  59. Arshad, M., SN Appl. Sci., 2020, vol. 2, p. 467. https://doi.org/10.1007/s42452-020-2243-0

    CAS  Article  Google Scholar 

  60. Alodeani, E.A., Arshad, M., and Izhari, M.A., Asian Pac. J. Trop. Biomed., 2015, vol. 5, pp. 676–683. https://doi.org/10.1016/j.apjtb.2015.04.010

    CAS  Article  Google Scholar 

  61. Arshad, M., Khan, M.S., and Nami, S.A.A., SN Appl. Sci., 2019, vol. 1, p. 548. https://doi.org/10.1007/s42452-019-0571-8

    CAS  Article  Google Scholar 

  62. Arshad, M., Int. J. Pharm. Sci. Res., 2018, vol. 9, pp. 12–19. https://www.ijpsr.info/docs/IJPSR18-09-02-004.pdf .

    CAS  Google Scholar 

  63. Arshad, M., Int. J. Pharm. Sci. Res., 2018, vol. 9 pp. 35–41. https://www.ijpsr.info/docs/IJPSR18-09-02-017.pdf .

    CAS  Google Scholar 

  64. Alodeani, E.A., Arshad, M., and Izhari, M.A., Eur. J. Pharm. Med. Res., 2015, vol. 2, pp. 296–301. http://www.ejpmr.com/admin/assets/article_issue/ 1446625932.pdf.

    Google Scholar 

  65. Alodeani, E.A., Arshad, M., and Izhari, M.A., Asian Pac. J. Health Sci., 2015, vol. 2, pp. 41–47. https://www.apjhs.com/pdf/8-Antileishmanial-screening-physicochemical-properties-and-drug-likeness-of-pyrazole-carbaldehyde-derivatives.pdf .

    Google Scholar 

  66. Arshad, M., Bhat, A.R., Hoi, K.K., Choi, I., and Athar, F., Chin. Chem. Lett., 2017, vol. 28 pp. 1559–1565. https://doi.org/10.1016/j.cclet.2016.12.037

    CAS  Article  Google Scholar 

  67. Arshad, M., Bhat, A.R., Pokharel, S., Kim, J.-E., Lee, E.J., Choi, I., and Athar, F., Eur. J. Med. Chem., 2014, vol. 71, pp. 229–236. https://doi.org/10.1016/j.ejmech.2013.11.008

    CAS  Article  PubMed  Google Scholar 

  68. Alodeani, E.A., Arshad, M., and Izhari, M.A., Eur. J. Pharm. Med. Res., 2015, vol. 2, pp. 324–328. http://www.ejpmr.com/admin/assets/article_issue/ 1448880734.pdf.

    Google Scholar 

  69. Arshad, M., Eur. J. Pharm. Med. Res., 2017, vol. 4, pp. 511–517. http://www.ejpmr.com/admin/assets/article_issue/ 1512459098.pdf.

    Google Scholar 

  70. Arshad, M., Int. J. Pharm. Pharm. Sci., 2014, vol. 9 pp. 16–24. https://innovareacademics.in/journals/index.php/ijpps/ article/view/1277/pdf_125.

    Google Scholar 

  71. Arshad, M., Ahmad, D., and Akhter, R., Chem. Data Collect., 2020, vol. 28, p. 100405. https://doi.org/10.1016/j.cdc.2020.100405

    CAS  Article  Google Scholar 

  72. Arshad, M., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 599–611. https://doi.org/10.1134/S1068162020040056

    Article  Google Scholar 

  73. Arshad, M., Int. J. Pharm. Sci. Res., 2014, vol. 5 pp. 1000–1013. https://doi.org/10.13040/IJPSR.0975-8232.5(4).1000-13

    CAS  Article  Google Scholar 

  74. Arshad, M., J. Iran. Chem. Soc., 2020, vol. 17, pp. 1305–1315. https://doi.org/10.1007/s13738-020-01855-9

    CAS  Article  Google Scholar 

  75. Arshad, M., Khan M.S., Nami S.A.A., and Ahmad, D., Russ. J. Gen. Chem., 2018, vol. 88, p. 882154. https://doi.org/10.1134/S1070363218100213

    Article  Google Scholar 

  76. Arshad, M., Russ. J. Gen. Chem., 2018, vol. 88, pp. 1886–1891. https://doi.org/10.1134/S1070363218090207

    CAS  Article  Google Scholar 

  77. Kareem, A., Laxmi, Arshad, M., Nami S.A.A., and Nishat, N., J. Photochem. Photobiol. B: Biol., 2016, vol. 160, pp. 163–171. https://doi.org/10.1016/j.jphotobiol.2016.03.030

    CAS  Article  Google Scholar 

  78. Iram, N.E., Khan M.S., Jolly, R., Arshad, M., Alam, M., Alam, P., Khan, R.H., and Firdaus, F., J. Photochem. Photobiol. B: Biol., 2015, vol. 153, pp. 20–32. https://doi.org/10.1016/j.jphotobiol.2015.09.001

    CAS  Article  Google Scholar 

  79. Nami, S.A.A., Arshad, M., Shakir, M., Khan M.S., Alam, M., Lee, D-U., Park, S., and Sarikavakli, N., Polym. Adv. Technol., 2015, vol. 26, no. 12, pp. 1627–1638. https://doi.org/10.1002/pat.3846

    CAS  Article  Google Scholar 

  80. Bushra, R., Shahadat, M., Khan, M.A., Adnan, R., Arshad, M., Rafatullah M., and Naushad, M., Int. J. Env. Sci. Technol., 2015, vol. 12, pp. 3635–3642. https://doi.org/10.1007/s13762-014-0726-5

    CAS  Article  Google Scholar 

  81. Nami, S.A.A., Khan M.S., Arshad, M., Raza M.A., and Khan, I., Polym. Adv. Technol., 2017, vol. 28, no. 1, pp. 10–19. https://doi.org/10.1002/pat.3846

    CAS  Article  Google Scholar 

  82. Khan, Z.K., in Proceedings of the International Workshop UNIDO-CDRI, 1997, p. 210.

  83. Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically Approved Standard, 7th ed., CLSI Document M7-A7. Wayne, Pennsylvania, USA, 2006, pp. 1–49. https://clsi.org/media/1928/m07ed11_sample.pdf .

  84. Gupta, M.K., Neelakantan, T.V., Sanghamitra, M., Tyagi, R.K., Dinda, A., Maulik, S., Mukhopadhyay, C.K., and Goswami, S.K., Antioxid. Redox Signaling, 2006, vol. 8, pp. 1081–1093. https://doi.org/10.1089/ars.2006.8.1081

    CAS  Article  Google Scholar 

  85. Mosmann, T., J. Immunol. Methods, 1983, vol. 65, p. 55. https://doi.org/10.1016/0022-1759(83)90303-4

    CAS  Article  PubMed  Google Scholar 

  86. Mouilleron S., Badet-Denisot M.A., Golinelli-Pimpaneau B., J. Mol. Biol., 2008, vol. 377, no. 4, pp. 1174–1185. https://doi.org/10.1016/j.abb.2010.08.008

    CAS  Article  PubMed  Google Scholar 

  87. Trott, O. and Olson, A.J., J. Comput. Chem., 2010, vol. 31, pp. 455–461. https://dx.doi.org/10.1002%2Fjcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Dr. Mohammad Arshad is highly thankful to Dr. Feras Al-Marshad, Dean College of Medicine, Al-Dawadmi, Shaqra University Kingdom of Saudi Arabia, for his kind support to accomplish this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arshad.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article doesnot contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the author.

Conflict of Interests

The authors report no conflicts of interest.

Additional information

Corresponding author: e-mail: mohdarshad1985@gmail.com; m.arshad@su.edu.sa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arshad, M., Khan, M.S. & Nami, S.A. Norfloxacin Analogues: Drug Likeness, Synthesis, Biological, and Molecular Docking Assessment. Russ J Bioorg Chem 47, 483–495 (2021). https://doi.org/10.1134/S1068162021020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021020047

Keywords:

  • drug likeness
  • analogues of norfloxacin
  • antimicrobial
  • MTT
  • and molecular docking