Skip to main content

Synthesis, Design, and Biological Evaluation of Novel Diethylphenylcarbamothioylphosphonate

Abstract

The aim of this work was to synthesize a diethyl phenylcarbamothioyl phosphonate (EThmP) and evaluate its biological activities. ThmP has been prepared with high yields and its conformation was determined. This phosphonothioamidate derivative was characterized by IR, and NMR Spectroscopy (1H, 13C, and 31P). On the component of EThmP, the Hirshfeld surface analysis indicates that the major contributions for the crystal packing are H···H (53.3%), H···O (12.9%) H···S (14.5%), and C···H (17.6%) interactions. An anti-nociceptive test (the formaline test) showed that the EThmP modulates the pain during the early and late phases proved by rat behavior characterized by absence of licking, biting and shaking of the affected paw. The modulation of pain by the EThmP may be due to its anti-inflammatory effect. The Hot Plate test showed that the pretreatment with the EThmP did not modulate the pain nociception induced by maintaining the rat at a fixed temperature of 48°C. The treated rats’ behavior was characterized by elevating, licking the paw, jumping and fleeing. EThmP did not affect the memory capacity and acetylcholinesterase activity. The morbidity of rats was normal with no mortality or sign of toxicity. The in vitro study showed that the EThmP has no antibacterial, antifungal and antioxidant activities. The EThmP has an important dose dependent anti-inflammatory activity.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Ben Ali, R., Ben Othman, A., Bokri, K., Maghraoui, S., Hajri, A., Ben Akacha, A., Dziri, C., and El May, M.V., Biomed. Pharmacother., 2015, vol. 86, pp. 109–117.

    Article  Google Scholar 

  2. Omrani, R.R., Ben Amor, F., Bahri, M., Efrit, M.L., and Ben Akacha, A., Phosphorus Sulfur Silicon Relat. Elem., 2015, vol. 190, pp. 1715–1741.

    CAS  Article  Google Scholar 

  3. Ben Ali, R., Omrani, R., Ben Akacha, A., and Dziri, C., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2019, vol. 220, pp. 117 154–117 158.

    Article  Google Scholar 

  4. Bandyopadhyay, U., Biswas, K., and Banerjee, R K., Toxicol. Lett., 2002, vol. 128, pp. 117–127.

    CAS  Article  Google Scholar 

  5. Zeng, M T., Wang, M., Peng, H.Y., Cheng, Y., and Don, Z B., Synthesis, 2018, vol. 50, pp. 644–650.

    CAS  Article  Google Scholar 

  6. Cao, X T., Qiao, L, Zheng, H., Yang, H.Y., and Zhang, P.F., R. S. C. Adv., 2018, vol. 8, pp. 170–175.

    CAS  Google Scholar 

  7. Zeev T., J. Org. Chem., 1982, vol. 47, pp. 3012–3015.

    Article  Google Scholar 

  8. Bose, D.S., Idrees, M., Todewale, I.K., Jakka, N.M., and Venkateswara, R., Eur. J. Med. Chem., 2012, vol. 50, pp. 27–38.

    Article  Google Scholar 

  9. Davies, C.D., Clliotta, E.M., and Wood, J.L., Tetrahedron, 2006, vol. 62, pp. 11 158–11 164.

    Article  Google Scholar 

  10. Bondock, S., Shymaa, A., Etman, H.A., and Badria, F.A., Eur. J. Med. Chem., 2015, vol. 48, pp. 192–199.

    Article  Google Scholar 

  11. Polshettiwar, V. and Kaushik, M P., Tetrahedron Lett., 2006, vol. 47, pp. 2315–2317.

    CAS  Article  Google Scholar 

  12. Bousaada, M., Ben Ali, R., and Ben Said, A., Biomed. Pharmacother., 2017, vol. 89, pp. 1005–1017.

    Article  Google Scholar 

  13. Iziara, I.F., Daiany, P.B., and José Luı’s, R.M., Inflammopharmacology, 2016, vol. 4, p. 265.

    Google Scholar 

  14. Kula, A., Akkar, O.B., and Gulturk, S., Hum. Exp. Toxicol., 2015, vol. 2, pp. 1–6.

    Google Scholar 

  15. Burra, S., Vijay Kumara, P., Nagendra Reddya, P., Sankeshi, V., Perugu, S., and G. L. David K., Russ. J. Bioorg. Chem., 2018, vol. 44, pp. 244–251. https://doi.org/10.1134/S1068162018020097

    Article  Google Scholar 

  16. Rogers, P.J., Hohoff, C., Heatherley, S.V., Mullings, E.L., Maxfield, P.J., Evershed, R.P., Deckert, J., and Nutt, D.J., Neuropsycho Pharmacol., 2010, vol. 35, pp. 1973–1983. https://doi.org/10.1038/npp.2010.71

    CAS  Article  Google Scholar 

  17. Wang, F., Langley, R., Gulten, G., Dover, L.G., Besra, G.S., Jacobs, W.R., Jr., and Sacchettini, J.C., J. Exp. Med., 2007, vol. 204, pp. 73–78.

    CAS  Article  Google Scholar 

  18. Abdelhamid, A.O., El Sayed, I.E., Hussein, M.Z., and Mangoud, M.M., Molecules, 2016, vol. 21, p. 1072. https://doi.org/10.3390/molecules21081072

    CAS  Article  PubMed Central  Google Scholar 

  19. Alagarsamy, V., Solomon, V., and Dhanabal, K., Bio Org. Med. Chem., 2007, vol. 15, p. 235.

    CAS  Article  Google Scholar 

  20. Elhenawy, A., El-Gazzar, M.A., and Mohmmed, H.M., Chem. Mat. Res., 2014, vol. 6, p. 69.

    Google Scholar 

  21. El Sayed, M.T., El-Sharief, M.A., and Zarie, E.S., Bioorg. Chem., 2017, vol. 13, p. 188.

    Google Scholar 

  22. Foye, W.O., Lemkle, T.L., Williams, D.A., and Media, P.A., USA, 2013, p. 988.

  23. Wolff, S.K., Greenwood, D.J., McKinnon, J.J., Jayatilaka, D., and Spackman, M.A., CrystalExplorer 3.1., 2012 (University of Western Australia, Perth).

    Google Scholar 

  24. Chtourou, Y., Fetoui, H.C., Sefi, M., Trabelsi, K., Barkallah, M., Boudawara, T., Kallel, H., and Zeghal, N., BioMetals, 2010, vol. 23, pp. 985–996. https://doi.org/10.1007/s10534-010-9345-x

    CAS  Article  PubMed  Google Scholar 

  25. Padmaja, A., Rajasekhar, C., Muralikrishna, A., and Padmavathi, V., Eur. J. Med. Chem., 2011, vol. 46, pp. 5034–5038. https://doi.org/10.1016/j.ejmech.2011.08.010

    CAS  Article  PubMed  Google Scholar 

  26. Shields, S.D., Cavanaugh, D.J., Lee, H., Anderson, D.J., and Basbaum, A.I., Pain, 2010, vol. 151, pp. 422–429.

    Article  Google Scholar 

  27. Tjolsen, A., Gerge, O.G., Hunskaar, S., Rosland, J.H., and Hole, K., Pain, 1992, vol. 51, pp. 5–17. https://doi.org/10.1016/0304-3959(92)90003-t

    Article  PubMed  Google Scholar 

  28. Elman, G.E., Courtney, K.D., Anderson, J.V., and Feather-Stone, R.M., Biochem. Pharmacol., 1961, vol. 7, pp. 88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  Google Scholar 

  29. Tsakiris, S., Angelogianni, P., Schulpis, K.H., and Stavridis, J.C., Clin. Biochem., 2000, vol. 33, pp. 103–106.

    CAS  Article  Google Scholar 

  30. Le Bar, D., Gozariu, M., and Cadden, S.W., Pharmacol. Rev., 2001, vol. 53, pp. 597–652.

    Google Scholar 

Download references

Funding

We are grateful for the Histology, Embryology, and Cell Biology Laboratory (UR17ES13) and Laboratory Selective Organic and Heterocyclic Synthesis Biological Activity Evaluation (LR11ES20) for their financial support to this research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ridha Ben Ali or Rania Omrani.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of Interests

The authors declare that there is no conflict of interest.

Additional information

Corresponding author: phone: +(216) 96-57-16-24.

Corresponding author: phone: +(216) 24-89-44-36.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ridha Ben Ali, Omrani, R., Ben Othman, A. et al. Synthesis, Design, and Biological Evaluation of Novel Diethylphenylcarbamothioylphosphonate. Russ J Bioorg Chem 47, 174–182 (2021). https://doi.org/10.1134/S1068162021010192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021010192

Keywords:

  • phosphonate thioamide
  • anti-inflammatory agent
  • formalin test
  • hot plate test
  • pain behavior