Skip to main content

Synthesis, Molecular Docking, In Vitro Anti-Bacterial, and Anti-Cancer Activities of Some Novel Oxo-Spiro Chromene Schiff’s Bases

Abstract

A series of novel oxo-spiro chromene Schiff’s bases were synthesized by condensing 2,7-diamino-2'-oxospiro[chromene-4,3'-indoline]-3-carbonitrile, and series of aromatic aldehydes. Spectrochemical techniques have corroborated the formation of desired products. Derivatives were screened in vitro for antibacterial and anticancer activities. Molecular docking analysis was also performed to predict the possible mode of action of these derivatives. The docking analysis ascertained that these derivatives regulate the antimicrobial potential via inhibition of DNA gyrase and anticancer potential via inhibition of CDK 6. Among all the synthesized compounds, Nitro derivatives have exhibited eminent anticancer and antibacterial activities.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Surve, N.N., Shankar,R., Saud, K., Gupta, R., Pandey, S., and Chavhan, S.T., Int. J. Chem. Stud., 2016, vol. 4, pp. 109–111.

    CAS  Google Scholar 

  2. Hussain, Z., Yousif, E., Ahmed, A., and Altaie, A., Org. Med. Chem. Lett., 2014, vol. 4, pp. 1–4. https://doi.org/10.1186/2191-2858-4-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Andruh, M., Dalt. Trans., 2015, vol. 44, pp. 16633–16653. https://doi.org/10.1039/c5dt02661j

    CAS  Article  Google Scholar 

  4. Kajal, A., Bala, S., Kamboj, S., Sharma, N., and Saini, V., J. Catal., 2013, vol. 2013, pp. 1–14. https://doi.org/10.1155/2013/893512

    CAS  Article  Google Scholar 

  5. Abd-Elzaher, M.M., Labib, A.A., Mousa, H.A., Moustafa, S.A., Ali, M.M., and El-Rashedy, A.A., Beni-Suef Univ. J. Basic Appl. Sci., 2016, vol. 5, pp. 85–96. https://doi.org/10.1016/j.bjbas.2016.01.001

    Article  Google Scholar 

  6. Da Silva, C.M., Da Silva, D.L., Modolo, L.V., Alves, R.B., De Resende, M.A., and Martins, C.V.B., J. Adv. Res., 2011, vol. 2, pp. 1–8. https://doi.org/10.1016/j.jare.2010.05.004

    Article  Google Scholar 

  7. Kerzare, D.R., Menghani, S.S., and Khedekar, P.B., Indian J. Pharm. Educ. Res., 2018, vol. 52, pp. 110–121. https://doi.org/10.5530/ijper.52.1.13

    CAS  Article  Google Scholar 

  8. Al-Masoudi, N.A., Aziz, N.M., and Mohammed, A.T., Phosphorus, Sulfur Silicon Relat. Elem., 2009, vol. 184, pp. 2891–2901. https://doi.org/10.1080/10426500802591630

    CAS  Article  Google Scholar 

  9. Alafeefy, A.M., Bakht, M.A., Ganaie, M.A., Ansarie, M.N., El-Sayed, N.N., and Awaad, A.S., Bioorg. Med. Chem. Lett., 2015, vol. 25, pp. 179–183. https://doi.org/10.1016/j.bmcl.2014.11.088

    CAS  Article  PubMed  Google Scholar 

  10. Brahmkshatriya, S., Lett. Drug Des. Discov., 2014, vol. 11, pp.82–89.

    Google Scholar 

  11. Ambika, S., Manojkumar, Y., Arunachalam, S., Venuvanalingam, and P., Akbarsha, M.A., Sci. Rep., 2019, vol. 9, pp. 1–14. https://doi.org/10.1038/s41598-019-39179-1

    CAS  Article  Google Scholar 

  12. Prakash, C.R., Raja, S., and Saravanan, G., Int. J. Pharm. Pharm. Sci., 2010. vol. 2, pp. 177–181.

    CAS  Google Scholar 

  13. Popp, P.D., Adv. Heterocycl. Chem., 1975. vol. 18, pp. 1–58. https://doi.org/10.1016/S0065-2725(08)60127-0

    CAS  Article  Google Scholar 

  14. Varun Sonam Kakkar, R., Med. Chem. Commun., 2019, vol. 10, pp. 351–368. https://doi.org/10.1039/c8md00585k

    CAS  Article  Google Scholar 

  15. Khan, F.A. and Maalik, A., Trop. J. Pharm. Res., 2015, vol. 14, pp.1937–1942. https://doi.org/10.4314/tjpr.v14i10.28

    CAS  Article  Google Scholar 

  16. Bal, T.R., Anand, B., Yogeeswari, P., and Sriram, D., Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 4451–4455. https://doi.org/10.1016/j.bmcl.2005.07.046

    CAS  Article  PubMed  Google Scholar 

  17. Lian, Z.M., Sun, J., and Zhu, H.L., J. Mol. Struct., 2016, vol. 1117, pp. 8–16. https://doi.org/10.1016/j.molstruc.2016.03.036

    CAS  Article  Google Scholar 

  18. Meleddu, R., Petrikaite, V., Distinto, S., Arridu, A., Angius, R., and Serusi, L., ACS Med. Chem. Lett., 2019, vol. 10, pp. 571–576. https://doi.org/10.1021/acsmedchemlett.8b00596

    CAS  Article  PubMed  Google Scholar 

  19. Nathani, B.R., Pandya, K.S., Jeni, M.M., and Patel, M.R., Pharma Chem., 2011, vol. 3, pp. 367–372.

    CAS  Google Scholar 

  20. Zheng, Y.J. and Tice, C.M., Expert Opin. Drug Discov., 2016, vol. 11, pp. 831–834. https://doi.org/10.1080/17460441.2016.1195367

    Article  PubMed  Google Scholar 

  21. Zheng, Y., Tice, C.M., and Singh, S.B., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 3673–3682. https://doi.org/10.1016/j.bmcl.2014.06.081

    CAS  Article  PubMed  Google Scholar 

  22. Sheng, C. and Georg, G.I., Targeting Protein–Protein Interactions by Small Molecules, Springer, 2018. https://doi.org/10.1007/978-981-13-0773-7

  23. Gouveia, R.G., Ribeiro, A.G., Segundo, M.Â.S.P., de Oliveira, J.F., de Lima, M. do C.A., and de Lima Souza, T.R.C., Bioorg. Med. Chem., 2018, vol. 26, pp. 5911–5921. https://doi.org/10.1016/j.bmc.2018.10.038

    CAS  Article  PubMed  Google Scholar 

  24. Yu, B., Yu, D.Q., and Liu, H.M., Eur. J. Med. Chem., 2015, vol. 97, pp. 673–698. https://doi.org/10.1016/j.ejmech.2014.06.056

    CAS  Article  PubMed  Google Scholar 

  25. Hati, S., Tripathy, S., Dutta, P.K., Agarwal, R., Srinivasan, R., and Singh, A., Sci. Rep., 2016, vol. 6, pp. 1–10. https://doi.org/10.1038/srep32213

    CAS  Article  Google Scholar 

  26. Velikorodov, A.V., Ionova, V.A., Degtyarev, O.V., and Sukhenko, L.T., Pharm. Chem. J., 2013, vol. 46, pp. 715–719. https://doi.org/10.1007/s11094-013-0876-7

    CAS  Article  Google Scholar 

  27. Tarver, M.L., Nicholson, J.M., and Scott, K.R., J. Pharm. Sci., 1985, vol. 74, pp. 785–787. https://doi.org/10.1002/jps.2600740721

    CAS  Article  PubMed  Google Scholar 

  28. Alvarez, R., Jimeno, M.L., Pérez-Pérez, M.J., De Clercq, E., Balzarini, J., and Camarasa, M.J., Antivir. Chem. Chemother., 1997, vol. 8, pp. 507–517. https://doi.org/10.1177/095632029700800604

    CAS  Article  Google Scholar 

  29. Poojari, S., Naik, P.P., Krishnamurthy, G., Kumara, K.J., Kumar, N.S., and Naik, S., J. Taibah Univ. Sci., 2017, vol. 11, pp. 497–511. https://doi.org/10.1016/j.jtusci.2016.10.003

    Article  Google Scholar 

  30. Crooks, P.A. and Sommerville, R., J. Pharm. Sci., 1982, vol. 71, pp. 291–304. https://doi.org/10.1002/jps.2600710306

    CAS  Article  PubMed  Google Scholar 

  31. Mortikov, V.Y., Litvinov, Y.M., Shestopalov, A.A., Rodinovskaya, L.A., and Shestopalov, A.M., Russ. Chem. Bull. Int. Ed., 2008, vol. 57, pp. 2373–2380.

    CAS  Article  Google Scholar 

  32. Zayed, E.M., Zayed, M.A., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, vol. 143, pp. 81–90. https://doi.org/10.1016/j.saa.2015.02.024

    CAS  Article  Google Scholar 

  33. Khalee, A.M.N. and Abdul-Ghani, A.J., Bioinorg. Chem. Appl., 2009, vol. 2009, pp. 1–12. https://doi.org/10.1155/2009/413175

    CAS  Article  Google Scholar 

  34. Balouiri, M., Sadiki, M., and Ibnsouda, S.K., J. Pharm. Anal., 2016, vol. 6, pp. 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  35. Vichai, V. and Kirtikara, K., Nat. Protoc., 2006, vol. 1, pp. 1112–1116. https://doi.org/10.1038/nprot.2006.179

    CAS  Article  PubMed  Google Scholar 

  36. Chen, P., Lee, N.V., Hu, W., Xu, M., Ferre, R.A., and Lam, H., Mol. Cancer Ther., 2016, vol. 15, pp. 2273–2281. https://doi.org/10.1158/1535-7163.MCT-16-0300

    CAS  Article  PubMed  Google Scholar 

  37. Thalji, R.K., Raha, K., Andreotti, D., Checchia, A., Cui, H., and Meneghelli,G., Bioorg. Med. Chem. Lett., 2019, vol. 29, pp. 1407–1412. https://doi.org/10.1016/j.bmcl.2019.03.029

    CAS  Article  PubMed  Google Scholar 

  38. Daina, A., Michielin, O., and Zoete, V., Nat. Publ. Gr., 2017, vol. 7, pp. 1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  39. Daina, A. and Zoete, V., Chem. Med. Chem., 2016, vol. 11, pp. 1117–1121. https://doi.org/10.1002/cmdc.201600182

    CAS  Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are thankful to Department of Chemistry, University of Mumbai, Santacruz (E) for spectral analysis, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC) Kharghar, Navi Mumbai for anticancer screening, Bharati Vidyapeeth College of Pharmacy, Kolhapur for antibacterial screening and molecular docking studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rathod.

Ethics declarations

Standards of Research Involving Animals

This article does not contain any studies involving animals performed by any of the authors.

Standards of Research Involving Humans as Subjects

This article does not contain any studies involving human participants performed by any of the authors.

Conflict of Interests

No potential conflict of interest was reported by the authors.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lotlikar, O.A., Dandekar, S.N., Ramana, M.M. et al. Synthesis, Molecular Docking, In Vitro Anti-Bacterial, and Anti-Cancer Activities of Some Novel Oxo-Spiro Chromene Schiff’s Bases. Russ J Bioorg Chem 47, 199–207 (2021). https://doi.org/10.1134/S1068162021010131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021010131

Keywords:

  • oxo-spiro chromene
  • Schiff’s base
  • antibacterial
  • anticancer
  • molecular docking