Skip to main content

Transcriptome Profiles in the Spleen of the Chinese Giant Salamander (Andrias davidianus) Challenged with Citrobacter freundii

Abstract

The Chinese giant salamander (Andrias davidianus) is one of the most important ecological breeding species with distinct characteristics and is cultured in many locations throughout China. In the present study, the transcriptome of A. davidianus spleen tissue, that had been challenged with Citrobacter freundii, was analyzed using Illumina sequencing technology. The result was compared to that of a healthy control group. After assembly and annotation, 128 540 transcripts were generated with a median length of 349 bp. Comparative expression analysis indicated 1995 differentially expressed genes (DEGs), 812 of which were up-regulated and 1183 were down-regulated. Furthermore, these DEGs were classified into three gene ontology categories, 535 of which were annotated to 237 KEGG pathways and 30 of them were immune-related. Five significantly enriched immune-related pathways were complement and coagulation cascades, TNF signaling pathway, NF-kappa B signaling pathway, B cell receptor signaling pathway, and leukocyte transendothelial migration. Finally, six immune-related DEGs involved in the immune-related pathways were randomly selected for scrutinization. This work provides valuable transcriptomic data for an improved understanding the defense mechanisms of A. davidianus against bacterial pathogens at the transcriptional level, as well as facilitating future studies on gene function of A. davidianus.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Chen, Z.Y., Gui, J.F., Gao, X.C., Pei, C., Hong, Y.J., and Zhang, Q.Y., Vet. Res., 2013, vol. 44, pp. 1–13. https://doi.org/10.1186/1297-9716-44-101

    CAS  Article  Google Scholar 

  2. Brannelly, L.A., Webb, R.J., Skerratt, L.F., and Berger, L., Pathog. Dis., 2016, vol. 74, p. ftw069. https://doi.org/10.1093/femspd/ftw069

    CAS  Article  PubMed  Google Scholar 

  3. Mebius, R.E., and Kraal, G., Nat. Rev. Immunol., 2005, vol. 5, pp. 606–616. https://doi.org/10.1038/nri1669

    CAS  Article  PubMed  Google Scholar 

  4. Rani, B. and Sharma, V.K., Agricult. Rev., 2017, vol. 38, pp. 271–281. https://doi.org/10.18805/ag.R-1549

    Article  Google Scholar 

  5. Fan, Y.D., Chang, M.X., Ma, J., LaPatra, S.E., Hu, Y.W., Huang, L.L., Nie, P., and Zeng, L.B., Vet. Res., 2015, vol. 46, p. 136. https://doi.org/10.1186/s13567-015-0279-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Qi, Z.T., Zhang, Q.H., Wang, Z.S., Ma, T.Y., Zhou, J., Holland, J.W., and Gao, Q., Vet. Immunol. Immunopathol., 2015, vol. 169, pp. 85–95. https://doi.org/10.1016/j.vetimm.2015.11.004

    CAS  Article  PubMed  Google Scholar 

  7. Ke, F., Gui, J.F., Chen, Z.Y., Lei, C.K., Wang, Z.H., and Zhang, Q.Y., BMC Genomics, 2018, vol. 19, p. 211. https://doi.org/10.1186/s12864-018-4596-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Huang, Y., Xiong, J.L., Gao, X.C., and Sun, X.H., Genomics Data, 2017, vol. 14, pp. 126–131. https://doi.org/10.1016/j.gdata.2017.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang, Y., Gao, X.C., Xiong, J.L., Ren, H.T., and Sun, X.H., 2017, vol. 12, pp. 109–110. https://doi.org/10.1016/j.gdata.2017.03.011

  10. Wang, P., Wang, J., Su, Y.Q., Mao, Y., Zhang, J.S., Wu, C.W., Ke, Q.Z., Han, K.H., Zheng, W.Q., and Xu, N.D., Fish Shellfish Immunol., 2016, vol. 48, pp. 1–11. https://doi.org/10.1016/j.fsi.2015.11.011

    CAS  Article  PubMed  Google Scholar 

  11. Li, Z.Z., Li, X.M., Chen, C.X., Gao, J.W., and Lv, A.J., Fish Shellfish Immunol., 2019, vol. 86, pp. 858–867. https://doi.org/10.1016/j.fsi.2018.12.029

    CAS  Article  PubMed  Google Scholar 

  12. Yin, F., Gao, Q.X., Tang, B.J., Sun, P., Han, K.H., and Huang, W.Q., Fish Shellfish Immunol., 2016, vol. 50, pp. 127–141. https://doi.org/10.1016/j.fsi.2016.01.022

    CAS  Article  PubMed  Google Scholar 

  13. Hu, J.H., Wu, X.M., Li, X.G., Li, H.K., Zheng, H.Y., Zhao, X.L., and Wang, B., J. Intervent. Radiol., 2011, vol. 20, pp. 890–894. https://doi.org/10.1073/pnas.81.18.5724

    Article  Google Scholar 

  14. KoBis, J.M., Rebl, A., Kühn, C., Korytar, T., Kollner, B., and Goldammer, T., Fish Shellfish Immunol., 2015, vol. 42, pp. 98–107. https://doi.org/10.1016/j.fsi.2014.10.032

    CAS  Article  PubMed  Google Scholar 

  15. Kimura, Y., Madhavan, M., Call, M.K., Santiago, W., Tsonis, P.A., Lambris, J.D., and Rio-Tsonis, K.D., J. Immunol., 2003, vol. 70, pp. 72 331–2339. https://doi.org/10.4049/jimmunol.170.5.2331

    Article  Google Scholar 

  16. Sun, J.Y., Geng, X.F., Guo, J.L., Zang, X.Y., Li, P.F., Li, D.M., and Xu, C.S., Comp. Biochem. Physiol. C, 2016, vol. 19, pp. 71–77. https://doi.org/10.1016/j.cbd.2016.06.004

    CAS  Article  Google Scholar 

  17. Rouaud, T., Siami, N., Dupas, T., Gervier, P., Gardahaut, M.F., Auda-Boucher, G., and Thiriet, C., Sci. Rep., 2017, vol. 7, pp. 171–179. https://doi.org/10.1038/s41598-017-00099-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez, S.F., Buchmann, K., and Nielsen, M.E., Dev. Comp. Immunol., 2007, vol. 31, p. 586. https://doi.org/10.1016/j.dci.2006.08.010

    CAS  Article  Google Scholar 

  19. Buchfink, B., Xie, C., and Huson, D.H., Nat. Methods, 2015, vol. 12, pp. 59–61. https://doi.org/10.1038/nmeth.3176

    CAS  Article  PubMed  Google Scholar 

  20. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., Nat. Methods, 2008, vol. 5, pp. 621–628. https://doi.org/10.1038/nmeth.1226

    CAS  Article  PubMed  Google Scholar 

  21. Huang, Y., Xiong, J., Brown, P.B., and Sun, X.H., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 207–216. https://doi.org/10.1134/S1068162020020193

    Article  Google Scholar 

  22. Natyrov, A.N., Vlasova, N.A., Matvienko, I.V., Volkov, E.M., Bayramov, V.M., Kurochkin, V.E., and Alexeev, J.I., Russ. J. Bioorg. Chem., 2018, vol. 44, pp. 562–571. https://doi.org/10.1134/s1068162010060063

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to LC.bio for the use of shared facilities.

Funding

This work was supported by the Doctoral Scientific Research Foundation of Henan University of Science and Technology, China (grant no. 13 480 079) and Key Scientific and Technological Project of Henan Province, China (grant no. 182 102 110 402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. C. Gao.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This study was performed in accordance with the recommendations of the Regulations for the Administration of Affairs Concerning Experimental Animals of China. All experiments were approved by the experimental Animal Inspectorate under the Ministry of Food, Agriculture, and Fisheries (license: 2013-15-0201-00764). All surgical procedures were performed under anesthesia using 500 mg/L 3-Aminobenzoic acid ethyl ester methanesulfonate (MS-222).

Conflicts of Interest

The authors declare no conflicts of interest.

Supplementary Information

APPENDIX 1

APPENDIX 1

Standard Abbreviations

ADRV Andrias davidianus iridovirus IL5Ra interleukin-5 receptor subunit alpha-like
ARR3 arrestin-C ITA inhibitor of apoptosis protein
BI infected group JAK-STAT just another kinase- signal transducer and activator of transcription
CK control group KEGG Kyoto Encyclopedia of Genes and Genomes
C3 complement 3 MAPK mitogen-activated protein kinase
CD72 C-type lectin domain family 4 member F-like protein MMP matrix metallopeptidase
CFD complement factor D MS-222 3-aminobenzoic acid ethyl ester methanesulfonate
CFS coagulation fibrinolysis system NF-kappa B nuclear factor kappa B
CSF3R granulocyte colony-stimulating factor receptor NFKBIA NF-kappa-B inhibitor alpha
DEGs differentially expressed genes NOD nucleotide-binding oligomerization domain
DLB delta-like protein 3 Nr non-redundant
DLC delta-like protein C-like PBS phosphate buffered saline
DLL4 delta-like protein 4 Pfam protein families database
dpi days post infection PI3K-Akt activated phosphoinositide 3-kinase- protein kinase B
DUSP1-a dual specificity protein phosphatase 1 PLAT tissue-type plasminogen activator
ECM extracellular matrix PLAU urokinase-type plasminogen activator
eggNOG evolutionary genealogy of genes: Non-supervised Orthologous Groups PTGS2 prostaglandin G/H synthase 2
FoxO Forkhead box class O family RIG retinoic acid-inducible gene
GO Gene ontology SERPINE plasminogen activator inhibitor
GSIV Chinese giant salamander iridovirus SYK tyrosine-protein kinase SYK isoform X1
hpi hours post infection TGF-β1 transforming growth factor beta-1
HSP heat shock proteins families TLR8 toll-like receptor 8
HSP90AA1 heat shock protein HSP 90-alpha isoform X1 TNF tumor necrosis factor
ICAM5 intercellular adhesion molecule 5 TNFRSF6B tumor necrosis factor receptor superfamily member 6B
IGDP4 V-set and immunoglobulin domain-containing protein 4- like isoform X2 TPM trans per million
IGHV V-set and immunoglobulin domain-containing-like protein TRAF1 TNF receptor-associated factor 2-like
IL17RB interleukin-17 receptor B isoform X1 VEGFA vascular endothelial growth factor B isoform X1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, X.C., Niu, S.H., Huang, Y. et al. Transcriptome Profiles in the Spleen of the Chinese Giant Salamander (Andrias davidianus) Challenged with Citrobacter freundii . Russ J Bioorg Chem 47, 252–260 (2021). https://doi.org/10.1134/S1068162021010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021010064

Keywords:

  • transcriptomic sequence
  • the chinese giant salamander (Andrias davidianus)
  • citrobacter freundii
  • spleen
  • immune-related pathways