Skip to main content
Log in

Development of a Technique for Obtaining Polysaccharides from Leaves of the Birch (Betula pendula Roth. and Betula pubescens Ehrh.)

  • PLANT BIOPOLYMERS
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The goal of the study was to develop a complex technique for the extraction and purification of polysaccharides from the leaves of birch (Betula pendula Roth., Betula pubescens Ehrh., family Betulaceae) (PSfB). The following characteristics have been used as criteria for estimating the effect of the parameters studied on the production of target compounds: the yield of PSfB (the gravimetric method), the protein content (spectrophotometry), the molecular weight distribution (high performance size-exclusion chromatography), and the degree of purification from low-molecular-weight impurities (LMWI). The following optimal parameters have been determined in experiments at different stages of PSfB production: the degree of grinding of a raw material 1.2–3 mm; the pH value of the extractant (purified water with the pH value of 6.5–7.0); the raw material : extractant ratio 1 : 20; the extraction temperature 50°C; the temperature and the degree of evaporation 50°C, four times; the concentrate : ethanol ratio 1 : 3; and the method of purification from LMWI by ultrafiltration. As a result of the work, an optimized method for obtaining PSfB has been developed, which affords a high yield without the loss of quality of the product (minimal admissible content of LMWI with the maximum content of high-molecular-weight fractions). The method is the basis for the development of laboratory regulations for obtaining an active pharmaceutical substance based on polysaccharides from birch leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Yeates, K., Lohfeld, L., Sleeth, J., Morales, F., Rajkotia, Y., and Ogedegbe, O., A global perspective on cardiovascular disease in vulnerable populations, Can. J. Cardiol., 2015, vol. 31, no. 9, pp. 1081–1093. https://doi.org/10.1016/j.cjca.2015.06.035

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nakamura, M., Miura, S., Takagaki, A., and Nanjo, F., Hypolipidemic effects of crude green tea polysaccharide on rats, and structural features of tea polysaccharides isolated from the crude polysaccharide, Int. J. Food Sci. Nutr., 2017, vol. 68, no. 3, pp. 321–330.  https://doi.org/10.1080/09637486.2016.1232376

    Article  CAS  PubMed  Google Scholar 

  3. Hebi, M. and Eddouks, M., Hypolipidemic activity of Tamarix articulata Vahl. in diabetic rats, J. Integr. Med., 2017, vol. 15, no. 6, pp. 476–482. https://doi.org/10.1016/S2095-4964(17)60361-3

    Article  PubMed  Google Scholar 

  4. Korolenko, T.A., Johnston, T.P., Machova, E., Bgatova, N.P., Lykov, A.P., Goncharova, N.V., Nescakova, Z., Shintyapina, A.B., Maiborodin, I.V., and Karmatskikh, O.L., Hypolipidemic effect of mannans from C. albicans serotypes A and B in acute hyperlipidemia in mice, Int. J. Biol. Macromol., 2018, vol. 107, part B, pp. 2385–2394. https://doi.org/10.1016/j.ijbiomac.2017.10.111

  5. Shituleni, A., Gan, F., Nido, S.A., Mengistu, B.M., Khan, A.Z., Liu, Y., and Huang, K., Effects of yeast polysaccharide on biochemical indices, antioxidant status, histopathological lesions and genetic expressions related with lipid metabolism in mice fed with high fat diet, Bioactive Carbohydr. Dietary Fibre, 2016, vol. 8, no. 2, pp. 51–57.  https://doi.org/10.1016/j.bcdf.2016.10.001

    Article  CAS  Google Scholar 

  6. Shukshina, O.G., Lipid-lowering effect and cellular composition of peritoneal exudate after the action of polysaccharides in rats with dyslipidemia, in Sbornik materialov I Vserossiyskaya nauchnaya studencheskaya konferentsiya s mezhdunarodnym uchastiyem Mediko-biologicheskiye nauki: dostizheniya i perspektivy (Collection of Materials I All-Russian Scientific Student Conference with International Participation “Biomedical Sciences: Achievements and Prospects”), Tomsk, 2011, pp. 127–129.

  7. Aspinall, G.O., The Polysacharides, Academic Press, 1983. https://doi.org/10.1016/C2013-0-10317-0

    Book  Google Scholar 

  8. Khasanova, S.R., Krivoshchekov, S.V., Kudashkina, N.V., Gur’yev, A.M., Rovkina, K.I., and Belousov, M.V., Component composition of the polysaccharide complex of Crataegus sanguinea (Rosaceae) leaves from the flora of the Republic of Bashkortostan, Rastit. Resur., 2015, vol. 51, no. 3, pp. 397–406.

    Google Scholar 

  9. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Pholin phenol reagent, J. Biol. Chem, 1951, vol. 193, pp. 265–275.

    Article  CAS  Google Scholar 

  10. Rovkina, K.I., Krivoshchekov, S.V., Guryev, A.M., Yusubov, M.S., and Belousov, M.V., Water-soluble polysaccharides of alfalfa (Medicago sativa (Fabaceae)) of flora of Krasnoyarsk krai, Russ. J. Bioorg. Chem, 2018, vol. 44, no. 7, pp. 854–859. https://doi.org/10.1134/S1068162018070105

    Article  CAS  Google Scholar 

  11. Sal’nikova, E.N., Kalinkina, G.I., and Dmitruk, S.Ye., Chemical study of flavonoids of great wormwood (Artemisia absinthium L.), Sivers’s wormwood (A. sieversiana Wlld.), and Yakut wormwood (A. jacutica Drob.), Khim. Rast. Syr’ya, 2001, no. 3, pp. 71–78.

  12. Krasochko, P.A., Kaputskiy, F.N., Krasochko, I.A., Zubets, O.V., and Alad’yeva, T.A., Characterization of the IR spectra of adjuvants based on plant polysaccharides, Uch. Zap. UO VGAVM, 2012, vol. 48, no. 2, part I, pp. 84–87.

  13. Domozych, D.S., Sørensen, I., Popper, Z.A., Ochs, J., Andreas, A., Fangel, J.U., Pielach, A., Sacks, C., Brechka, H., Ruisi-Besares, P., Willats, W.G.T., and Rose, J.K.C., Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum, Plant, 2014, vol. 165, no. 1, pp. 105–118. https://doi.org/10.1104/pp.114.23625

    Article  CAS  Google Scholar 

  14. Levin, B.D. and Fedyulin, A.S., Influence of the hydromodule on the yield of biologically active substances, Vestn. KrasGAU, 2007, no. 2, pp. 266–269.

  15. Liu, J., Bai, R., Liu, Y., Zhang, X., Kan, J., and Jin, C., Isolation, structural characterization and bioactivities of naturally occurring polysaccharide−polyphenolic conjugates from medicinal plants—a review, Int. J. Biol. Macromol., 2018, vol. 107, part B, pp. 2242–2250.  https://doi.org/10.1016/j.ijbiomac.2017.10.097

  16. Sukhov, B.G., Pogodaeva, N.N., Kuznetsov, S.V., Kupriyanovich, Yu.N., Yurinova, G.V., Selivanova, D.S., Pistavka, A.A., Dzhioev, Yu.P., Popkova, S.M., Rakova, E.B., Medvedeva, P.A., and Trofimov, B.A., Prebiotic effect of native noncovalent arabinogalactan–flavonoid conjugates on bifidobacteria, Russ. Chem. Bull., 2014, vol. 63, no. 9, pp. 2189–2194. https://doi.org/10.1007/s11172-014-0718-0

    Article  CAS  Google Scholar 

  17. Shipovskaya, A.B., Metody vydeleniya i fiziko-khimicheskiye svoystva prirodnykh polisakharidov (Isolation Methods and Physicochemical Properties of Natural Polysaccharides), Saratov, 2015.

    Google Scholar 

  18. Fan, L.P., Li, J.W., Deng, K.Q., and Ai, L.Z., Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum, Carbohydr. Polym., 2012, vol. 87, pp. 1849–1854.  https://doi.org/10.1016/j.carbpol.2011.10.018

    Article  CAS  Google Scholar 

  19. Li, X.Y., Wang, L., Wang, Y., and Xiong, Z.H., Effect of drying method on physicochemical properties and antioxidant activities of Hohenbuehelia serotina polysaccharides, Process Biochem., 2016, vol. 51, pp. 1100–1108.  https://doi.org/10.1016/j.procbio.2016.05.006

    Article  CAS  Google Scholar 

  20. Warrand, J., Michaud, P., Miller, G., Courtois, D., and Ralainirina, R., Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of new anionic polymer, Chromatographia, 2003, vol. 58, pp. 331–335.  https://doi.org/10.1365/s10337-003-0060-4

    Article  CAS  Google Scholar 

  21. Lu, X., Li, N., Qiao, X., Qiu, Z., and Liu, P., Effects of thermal treatment on polysaccharide degradation during black garlic processing, LWT, 2018, vol. 95, pp. 223–229. https://doi.org/10.1016/j.lwt.2018.04.059

    Article  CAS  Google Scholar 

  22. Jiang, Y., Qi, X., Gao, K., Liu, W., Li, N., and Cheng, N., Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides, Glycoconj. J., 2016, vol. 33, pp. 755–761.  https://doi.org/10.1007/s10719-016-9669-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Rovkina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The work does not involve experiments on animals or humans.

Conflict of Interests

Authors declare they have no conflicts of interests.

Additional information

Translated by S. Sidorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovkina, K.I., Krivoshchekov, S.V., Guriev, A.M. et al. Development of a Technique for Obtaining Polysaccharides from Leaves of the Birch (Betula pendula Roth. and Betula pubescens Ehrh.). Russ J Bioorg Chem 46, 1310–1316 (2020). https://doi.org/10.1134/S1068162020070134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020070134

Keywords

Navigation