Skip to main content
Log in

Synthesis of New Furanone Derivatives with Potent Anticancer Activity

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

New compounds based on Furanone derivatives were synthesized by reaction of 3-(4-nitrobezylidine)-5-phenylfuran-2(3H)-one with various reagents as malononitrile then D-glucose, thiosemicarbazide then D-glucose, ethyl acetoacetate, acetyl acetone, ethyl cyanoacetate, hydrazine hydrate/acetic acid, thiourea, o-phenylene diamine, hydrazine hydrate/ethanol then 2-naphthalene thionylchloride and/or thiourea. Also, 3-(4-nitrobezylidine)-5-phenylfuran-2(3H)-one was reacted with benzyl amine to afford the 1,3-dihydro-2H-pyrrol-2-one derivative which was reacted with hydroxyl amine and/or phenyl hydrazine to afford compounds the oxazole and/or pyrazole derivatives respectively. Finely, 6-(4-nitrophenyl)-5-(2-oxo-2-phenylethyl)-2-thioxotetrahydro-pyrimidin-4(1H)-one was allowed to react with 2-oxo-N-phenylpropanehydrazonoyl chloride yielding [1,2,4]triazolo[4,3-a]pyrimidin-7(1H)-one derivative. The anti-cancer activity of some of some of the new synthesized compounds towards breast carcinoma cells (MCF-7) was evaluated that demonstrated good to moderate results. Also, we had evaluated the cytotoxicity of the new tested compounds against the normal cells (MRC-5) which showed low toxicity on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Vane, J.R., Bakhle, Y.S., and Botting, R.M., Annu. Rev. Pharmacol. Toxicol., 1998, vol. 38, pp. 97–120. https://doi.org/10.1146/annurev.pharmtox.38.1.97

    Article  CAS  PubMed  Google Scholar 

  2. Botting, J.H., Drugs Today, 1999, vol. 35, pp. 225–235.

    Article  CAS  Google Scholar 

  3. Kurumbail, R.G., Stevens, A.M., Gierse, J.K., McDonald, J.J., Stegeman, R.A., Pak, J.Y., Gildehaus, D., Iyashiro, J.M., Penning, T.D., Seibert, K., Isakson, P., and Stalling, W.C., Nature, 1996, vol. 384, pp. 644–648. https://doi.org/10.1038/384644a0

    Article  CAS  PubMed  Google Scholar 

  4. Simmons, D. L., Botting, R. M., and Hla, T., Pharmacol. Rev., 2004, vol. 56, pp. 387–437. https://doi.org/10.1124/pr.56.3.3

    Article  CAS  PubMed  Google Scholar 

  5. Kargman, S.L., O’Neill, G.P., Vickers, P.J., Evans, J.F., Mancini, J.A., and Jothy, S., Cancer Res., 1995, vol. 55, pp. 2556–2559.

    CAS  PubMed  Google Scholar 

  6. Gupta, A.K., Gupta, R.A., Soni, L. K., and Kaskhedikar, S.G., Eur. J. Med. Chem., 2008, vol. 43, pp. 1297–1303. https://doi.org/10.1016/j.ejmech.2007.06.022

    Article  CAS  PubMed  Google Scholar 

  7. Singh, P., Mittal, A., Kaur, S., and Kumar, S., Eur. J. Med. Chem., 2008, vol. 43, pp. 2792–2799. https://doi.org/10.1016/j.ejmech.2007.12.017

    Article  CAS  PubMed  Google Scholar 

  8. Yao, X.J., Panaye, A., Doucet, J.P., Zhang, R.S., Chen, H.F., Liu, M.C., Hu, Z.D., and Fan, B.T., J. Chem. Inf. Comput. Sci., 2004, vol. 44, pp. 1257–1266. https://doi.org/10.1021/ci049965i

    Article  CAS  PubMed  Google Scholar 

  9. Ravichandran, V., Mourya, V.K., and Agrawal, R.K., Arkivoc, 2007, vol. 14, pp. 204–212. https://doi.org/10.3998/ark.5550190.0008.e07

    Article  Google Scholar 

  10. Gupta, S.P., Babu, M.S., Garg, R., and Sowmya, S. J., Enzyme Inhib., 1998, vol. 13, pp. 399–407. https://doi.org/10.3109/14756369809020545

    Article  CAS  Google Scholar 

  11. Hansch, C. and Fujita, T., J. Am. Chem. Soc., 1964, vol. 86, pp. 1616–1626. https://doi.org/10.1021/ja01062a035

    Article  CAS  Google Scholar 

  12. Bihelovic, F. and Saicic, R.N., Angew. Chem. Int. Ed., 2012, vol. 51, pp.5687–5691. https://doi.org/10.1002/anie.201108223

    Article  CAS  Google Scholar 

  13. Trost, B.M., Burns, A.C., Bartlett, M.J., Tautz, T., and Weiss, A.H., J. Am. Chem. Soc., 2012, vol. 134, pp. 1474–1477. https://doi.org/10.1021/ja210986f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, J., Yang, P., Yao, M., Deng, J., and Li, A., J. Am. Chem. Soc., 2014, vol. 136, pp. 16 477–16 480. doi.org/10.1021/ja5092563

    Google Scholar 

  15. You, L., Liang, X.-T., Xu, L.-M., Wang, Y.-F., Zhang, J.-J., Su, Q., Li, Y.-H., Zhang, B., Yang, S.-L., and Chen, J.-H., J. Am. Chem. Soc., 2015, vol. 137, pp. 10 120–10 123.  https://doi.org/10.1021/jacs.5b06480

    Article  CAS  Google Scholar 

  16. Trost, B.M. and Hitce, J., J. Am. Chem. Soc., 2009, vol. 131, pp. 4572–4573. https://doi.org/10.1021/ja809723u

    Article  CAS  Google Scholar 

  17. Ube, H., Shimada, N., and Terada, M., Angew. Chem. Int. Ed., 2010, vol. 49, pp. 1858–1861.  https://doi.org/10.1002/anie.201100646

    Article  CAS  Google Scholar 

  18. Jiang, B., Feng, B.-M., Wang, S.-L., Tu, S.-J., and Li, G.-G., Chem. Eur. J., 2012, vol. 18, pp. 9823–9826. https://doi.org/10.1002/chem.201201862

    Article  CAS  PubMed  Google Scholar 

  19. Yavorskyy, A., Shvydkiv, O., Hoffmann, N., Nolan, K., and Oelgemoller, M., Org. Lett., 2012, vol. 14, pp. 4342–4345. https://doi.org/10.1021/ol301773r

    Article  CAS  PubMed  Google Scholar 

  20. Moller, T., Wonneberger, P., Kretzschmar, N., and Hey-Hawkins, E., Chem. Commun., 2014, vol. 50, pp. 5826–5828.

    Article  Google Scholar 

  21. Hoogenboom, J., Lutz, M., Zuilhof, H., and Wennekes, T., J. Org. Chem., 2016, vol. 81, pp. 8826–8836 https://doi.org/10.1021/acs.joc.6b01515

    Article  CAS  PubMed  Google Scholar 

  22. Lattmann, E., Dunn, S., Niamsanit, S., and Sattayasai, N., Bioorg. Med. Chem. Lett., 2005, vol. 15, pp. 919–921. https://doi.org/10.1016/j.bmcl.2004.12.051

    Article  CAS  PubMed  Google Scholar 

  23. Semenova, M.N., Kiselyov, A.S., Tsyganov, D.V., Konyushkin, L.D., Firgang, S.I., Semenov, R.V., Malyshev, O.R., Raihstat, M.M., Fuchs, F., Stielow, A., Lantow, M., Philchenkov, A.A., Zavelevich, M.P., Zefirov, N.S., Kuznetsov, S.A., and Semenov, V.V., J. Med. Chem., 2011, vol. 54, pp. 7138–7149. https://doi.org/10.1021/jm200737s

    Article  CAS  PubMed  Google Scholar 

  24. Xiao, Z.-P., Ma, T.-W., Liao, M.-L., Feng, Y.-T., Peng, X.-C., Li, J.-L., Li, Z.-P., Wu, Y., Luo, Q., Deng, Y., Liang, X., and Zhu, H.-L., Eur. J. Med. Chem., 2011, vol. 46, pp. 4904–4914. doi.org/10.1016/j.ejmech.2011.07.047

    Google Scholar 

  25. Kumar, A., Kumar, V., Alegria, A.E., and Malhotra, S.V., Curr. Med., Chem. 2011, vol. 18, pp. 3853–3870. https://doi.org/10.2174/092986711803414331

    Article  CAS  Google Scholar 

  26. Kamal, A., Srinivasa Reddy, T., Polepalli, S., Paidakula, S., Srinivasulu, V., Ganga Reddy, V., Jain, N., and Shankaraiah, N., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 3356–3360. doi.org/10.1016/j.bmcl.2014.05.096

    Google Scholar 

  27. Dai, Y., Zhou, G.-X., Kurihara, H., Ye, W.-C., and Yao, X.-S., J. Nat. Prod., 2006, vol. 69, pp. 1022–1024. https://doi.org/10.1021/np0600853

    Article  CAS  PubMed  Google Scholar 

  28. Kim, K.H., Choi, S.U., Ha, S.K., Kim, S.Y., and Lee, K.R., J. Nat. Prod., 2009, vol. 72, pp. 2061–2064. https://doi.org/10.1021/np900460j

    Article  CAS  PubMed  Google Scholar 

  29. Newson, H.L., Wild, D.A., Yeung, S.Y., Skelton, B.W., Flematti, G.R., Allan, J.E., and Piggott, M.J., J. Org. Chem., 2016, vol. 81, pp. 3127–3135. https://doi.org/10.1021/acs.joc.5b02861

    Article  CAS  PubMed  Google Scholar 

  30. Asselah, T.J., Hepatol., 2011, vol. 54, pp. 1069–1072. https://doi.org/10.1016/j.jhep.2010.11.033

    Article  Google Scholar 

  31. Singh, C., Verma, V.P., Hassam, M., Singh, A.S., Naikade, N.K., and Puri, S.K., J. Med. Chem., 2014, vol. 57, pp. 2489–2497. https://doi.org/10.1021/jm401774f

    Article  CAS  PubMed  Google Scholar 

  32. Ghisaidoobe, A.T., van den Berg, R.J.B.H.N., Butt, S.S., Strijland, A., Donker-Koopman, W.E., Scheij, S., van den Nieuwendijk, A.M.C.H., Koomen, G.-J., van Loevezijn, A., Leemhuis, M., Wennekes, T., van der Stelt, M., van der Marel, G.A., van Boeckel, C.A.A., Aerts, J.M.F.G., and Overkleeft, H.S., J. Med.Chem. 2014, vol. 57, pp. 9096–9104. https://doi.org/10.1021/jm501181z

    Article  CAS  PubMed  Google Scholar 

  33. Ghosh, A.K., Yu, X.F., Osswald, H.L., Agniswamy, J., Wang, Y.F., Amano, M., Weber, I.T., and Mitsuya, H., J. Med. Chem., 2015, vol. 58, pp. 5334–5343. https://doi.org/10.1021/acs.jmedchem.5b00676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guglielmo, S., Lazzarato, L., Contino, M., Perrone, M.G., Chegaev, K., Carrieri, A., Fruttero, R., Colabufo, N.A., and Gasco, A., J Med. Chem., 2016, vol. 59, pp. 6729–6738. https://doi.org/10.1021/acs.jmedchem.6b00252

    Article  CAS  PubMed  Google Scholar 

  35. Gao, M., Nettles, R.E., Belema, M., Snyder, L.B., Nguyen, V.N., Fridell, R.A., Serrano-Wu, M.H., Langley, D.R., Sun, J.H., O’Boyle, D.R., Lemm, J.A., Wang, C.F., Knipe, J.O., Chien, C., Colonno, R.J., Grasela, D.M., Meanwell, N.A., and Hamann, L.G., Nature, 2010, vol. 465, pp. 96–100.

    Article  CAS  Google Scholar 

  36. Bae, I.H., Choi, J.K., Chough, C., Keum, S.J., Kim, H., Jang, S.K., and Kim, B.M., ACS Med. Chem. Lett., 2014, vol. 5, pp. 255–258. https://doi.org/10.1021/ml4003293

    Article  CAS  PubMed  Google Scholar 

  37. Bae, I.H., Kim, H.S., You, Y., Choug, C., Choe, W., Seon, M.K., Lee, S.G., Keum, G., Jang, S.K., Kim, B.M., Eur. J. Med. Chem., 2015, vol. 101, pp. 163–178. https://doi.org/10.1016/j.ejmech.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  38. Palmer, B.D., Thompson, A.M., Sutherland, H.S., Blaser, A., Kmentova, I., Franzblau, S.G., Wan, B., Wang, Y., Ma, Z., and Denny, W.A., J. Med. Chem., 2010, vol. 53, pp. 282–294. https://doi.org/10.1021/jm901207n

    Article  CAS  PubMed  Google Scholar 

  39. Hughes, A.D., Chen, Y., Hegde, S.S., Jasper, J.R., Jaw-Tsai, S., Lee, T.W., McNamara, A., Pulido-Rios, M.T., Steinfeld, T., and Mammen, M., J. Med. Chem., 2015, vol. 58, pp. 2609–2622. https://doi.org/10.1021/jm501915g

    Article  CAS  PubMed  Google Scholar 

  40. Lai, M.-J., Lee, H.-Y., Chuang, H.-Y., Chang, L.-H., Tsai, A.-C., Chen, M.-C., Huang, H.-L., Wu, Y.-W., Teng, C.-M., Pan, S.-L., Liu, Y.-M., Mehndiratta, S., and Liou, J.-P., J. Med. Chem., 2015, vol. 58, pp. 6549–6558. https://doi.org/10.1021/acs.jmedchem.5b00659

    Article  CAS  PubMed  Google Scholar 

  41. Niece, K.L., Hartgerink, J.D., Donners, J.J.J.M., and Stupp, S.I., J., Am. Chem. Soc., 2003, vol. 125, pp. 7146–7147. https://doi.org/10.1021/ja028215r

    Article  CAS  Google Scholar 

  42. Horgan, C.C., Rodriguez, A.L., Li, R., Bruggeman, K.F., Stupka, N., Raynes, J.K., Day, L., White, J. W., Williams, R. J., and Nisbet, D.R., Acta Biomater., 2016, vol. 38, p. 11. https://doi.org/10.1016/j.actbio.2016.04.038

    Article  CAS  PubMed  Google Scholar 

  43. El-Sayed W.A., Nassar I.F., and Abdel-Rahman A.A., J. Heterocycl. Chem., 2011, vol. 48, pp. 135–143. https://doi.org/10.1002/jhet.522

    Article  CAS  Google Scholar 

  44. Chevallier, F., Halauko, Y.S., Pecceu, C., Nassar, I.F., Dam, T.U., Roisnel, T., Matulis, V. E., Ivashkevich, O. A., and Mongin, F., Org. Biomol. Chem., 2011, vol. 9, pp. 4671–4684. https://doi.org/10.1039/c1ob05267e

    Article  CAS  PubMed  Google Scholar 

  45. Nassar, I.F. and Assaly, S.A.-E., Pharma Chem., 2011, vol. 3, pp. 229–238.

    CAS  Google Scholar 

  46. Abdel Rahman, A.A., Nassar, I.F., El Katan, I.M.H., Aly, A.A., and Behalo, M.S., Pharma Chem., 2013, vol. 5, pp. 210–217.

    CAS  Google Scholar 

  47. Nassar, I.F., J. Heterocycl. Chem., 2013, vol. 50, pp. 129–134. https://doi.org/10.1002/jhet.1022

    Article  CAS  Google Scholar 

  48. Nassar, I.F., Atta-Allah, S.R., and Elgazwy, A.S.H., J. Enzym. Inhib. Med. Chem., 2015, vol. 30, p. 396. https://doi.org/10.3109/14756366.2014.940936

    Article  CAS  Google Scholar 

  49. Abou El Saou,d, Y.M.H., El Gazwy, A.-S.S.H., Nassar, I.F., Ismail, N.S.M., and Abdel Sattar, N.A., WO Patent no. 2015127941 A1, 2015.

  50. Abu-Dief, A.M., Nassar, I.F., and Elsayed, W.H., Appl. Organometal. Chem., 2016, vol. 30, pp. 917–923. https://doi.org/10.1002/aoc.3521

    Article  CAS  Google Scholar 

  51. Nassar, I.F., El Farargy, A.F., Abdelrazek, F.M., and Ismail, N.S.M., Nucleosides Nucleotides Nucleic Acids, 2017, vol. 36, pp. 275–291. https://doi.org/10.1080/15257770.2016.1276290

    Article  CAS  PubMed  Google Scholar 

  52. Nassar, I.F., El Farargy, A.F., and Abdelrazek, F.M., J. Heterocyclic Chem., 2018, vol. 55, p. 1709. https://doi.org/10.1002/jhet.3208

    Article  CAS  Google Scholar 

  53. Nassar, I.F., Att-Allah, S.R., and Hemdan, M.M., Phosphorous Sulphur Silicon, 2018, vol. 193, pp. 630–636. https://doi.org/10.1080/10426507.2018.1487435

    Article  CAS  Google Scholar 

  54. Nassar, I. F., El-Sayed, W. A., Ragab, T.I.M., Shalaby, A.S.G., and Mehany, A., Mini Rev. Med. Chem., 2019, vol. 9, pp. 395–409. https://doi.org/10.2174/1389557518666180820125210

    Article  CAS  Google Scholar 

  55. El-Shehry, M.F., Abu-Zied, K.M., Ewies, E.F., Awad, S.M., and Mohram, M.E., Pharma Chem., 2013, vol. 5, pp. 318–326.

    CAS  Google Scholar 

  56. Eweiss, N.F. and Osman, A., J. Heterocycl. Chem., 1980, vol. 17, pp. 1713–1717. https://doi.org/10.1002/jhet.5570170814

    Article  CAS  Google Scholar 

  57. Mosmann, T.J., Immunol. Methods, 1983, vol. 65, pp. 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  58. Gomha, S.M., Riyadh, S.M., Mahmmoud, E.A., and Elaasser, M.M., Heterocycles, 2015, vol. 91, pp. 1227–1243. https://doi.org/10.3987/COM-15-13210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Nassar.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the authors.

Conflict of Interests

The authors declare no conflict of interests, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashin, W.H., Nassar, I.F., El Farargy, A.F. et al. Synthesis of New Furanone Derivatives with Potent Anticancer Activity. Russ J Bioorg Chem 46, 1074–1086 (2020). https://doi.org/10.1134/S1068162020060163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020060163

Navigation