Skip to main content

Molecular Characterization and Expression Patterns of Shabby-Related Kinase (MmSK) Gene of Mulberry (Morus multicaulis)

Abstract

Shaggy-related protein kinase (SK) plays important roles in the plant growth development, signal transduction, abiotic stress and biotic stress and substance metabolism regulation. In the present paper, a cDNA sequence encoding MmSK (GenBank accession No: KY348867) was cloned from the leaves of mulberry based on mulberry expressed sequence tags (EST) and homologous cloning technology using RT-PCR, which was 1705 bp in length with a full open reading frame (ORF) of 1236 bp encoding a protein of 411 amino acids. The estimated molecular weight and isoelectric point (pI) of the putative protein were 46.55 kDa and 8.61, respectively. Conservation domain structure analysis indicated that MmSK protein had typical structure of the protein kinase domain and belonged to GSK3/shaggy protein kinase family. Multiple sequence alignment and phylogenetic analysis showed that the homology between the amino acid sequences encoded by the MmSK gene and various species was more than 89%. Quantitative real-time PCR (qRT-PCR) analysis revealed that MmSK was expressed in all the tested tissues including leaf, bud, fruit, stem, phloem and xylem of the mulberry with the highest expression in the phloem. The expression level of the mRNA has changed significantly under salt, drought, cold and ABA stress treatments compared to the normal growth environment. Overall, these results showed a better understanding of the molecular basis for the signal transduction mechanism during the stress responses in mulberry trees.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Chen, Z., Yuan, Y., Fu, D., Shen, C., and Yang, Y., Int. J. Mol. Sci., 2017, vol. 18, p. 927. https://doi.org/10.3390/ijms18050927

    CAS  Article  PubMed Central  Google Scholar 

  2. Soltis, P.S., Albert, V.A., Mi-Jeong, Y., and Soltis, D.E, BMC Plant Biol., 2006, vol. 6, pp. 3–16. https://doi.org/10.1186/1471-2229-6-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Qi, X., Chanderbali, A.S., Wong, K.S., Soltis, D.E., and Soltis, P.S., BMC Evol. Biol., 2013, vol. 13, pp. 143–155. https://doi.org/10.1186/1471-2148-13-143

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Dornelas, M.C., Wittich, P., Recklinghausen, I.V., Lammeren, A.V., and Kreis, M., Plant Mol. Biol., 1999, vol. 39, pp. 137–147. https://doi.org/10.1023/a:1006102812280

    CAS  Article  PubMed  Google Scholar 

  5. Bittner, T., Campagne, S., Neuhaus, G., Rensing, S.A., and Fischeriglesias, C., BMC Plant Biol., 2013, vol. 13, p. 115. https://doi.org/10.1186/1471-2229-13-64

    CAS  Article  Google Scholar 

  6. Jonak, C., Beisteiner, D., Beyerly, J., and Hirt, H., Plant Cell, 2000, vol. 12, pp. 1467–1475. https://doi.org/10.1105/tpc.12.8.1467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Einzenberger, E., Eller, N., Heberle-Bors, E., and Vicente, O., Biochim. Biophys. Acta, 2008, vol. 1260, pp. 315–319. https://doi.org/10.1016/0167-4781(94)00229-V

    Article  Google Scholar 

  8. Vert, G., Walcher, C.L., Chory, J., and Nemhauser, J.L., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 9829–9834. https://doi.org/10.1073/pnas.0803996105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saidi, Y., Hearn, T.J., and Coates, J.C., Trends Plant Sci., 2012, vol. 17, pp. 39–46. https://doi.org/10.1016/j.tplants.2011.10.002

    CAS  Article  PubMed  Google Scholar 

  10. Kim, T.W., Michniewicz, M., Bergmann, D.C., and Wang, Z.Y., Nature, 2012, vol. 482, pp. 419–422. https://doi.org/10.1038/nature10794

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Gudesblat, G.E., Schneider-Pizoń, J., Betti, C., Mayerhofer, J., Vanhoutte, I., Van Dongen, W., Boeren, S., Zhiponova, M., De Vries, S., Jonak, C., and Russinova, E., Nat. Cell Biol., 2012, vol. 14, pp. 548–554. https://doi.org/10.1038/ncb2471

    CAS  Article  PubMed  Google Scholar 

  12. Mills-Lujan, K., Andrews, D.L., Chou, C.W, and Deom, C.M., PLoS One, 2015, vol. 10, e0122 356. https://doi.org/10.1371/journal.pone.0122356

    CAS  Article  Google Scholar 

  13. Hu, Z., Lu, S.J., Wang, M.J., He, H., Sun, L., Wang, H., Liu, X.H., Jiang, L., Sun, J.L., Xin, X., Kong, W., Chu, C., Xue, H.W., Yang, J., Luo, X., and Liu, J.X., Mol. Plant, 2018, vol. 11, pp. 736–749. https://doi.org/10.1016/j.molp.2018.03.005

    CAS  Article  PubMed  Google Scholar 

  14. Qiao, S., Sun, S., Wang, L., Wu, Z., Li, C., Li, X., Wang, T., Leng, L., Tian, W., Lu, T., and Wang, X., Plant Cell, 2017, vol. 29, pp. 292–309. https://doi.org/10.1186/1471-2148-13-143

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Han M.S., Noh E.W., and Han S.H., Plant Biotechnol. Rep., 2013, vol. 7, pp. 39–47. https://doi.org/10.1007/s11816-012-0258-8

    Article  Google Scholar 

  16. Rai, M.K., Asthana, P., Singh, S.K., Jaiswal, V.S., and Jaiswal, U., Biotechnol. Adv., 2009, vol. 27, pp. 671–679. https://doi.org/10.1016/j.biotechadv.2009.04.025

    Article  PubMed  Google Scholar 

  17. Natić, M.M., Dabić, D.Č., Papetti, A., Fotirić Akšić, M.M., Ognjanov, V., Ljubojević, M., and Tešić, Ž., North SerbiaFood Chem., 2015, vol. 171, pp. 128–136. https://doi.org/10.1016/j.foodchem.2014.08.101

    CAS  Article  PubMed  Google Scholar 

  18. Liu, J., Cao, M., Tang, X., Yang, X., Huang, X., and Qin, J., Int. J. Acta Ecol. Sin., 2016, vol. 36, pp. 22–29. https://doi.org/10.5846/stxb201408211660

    Article  Google Scholar 

  19. Zheng, H., Han, F., and Le, J., Microgravity Sci. Tech., 2015, vol. 27, pp. 377–386. https://doi.org/10.1007/s12217-015-9428-y

    CAS  Article  Google Scholar 

  20. Wang, L., Yang, Z., Zhang, B., Yu, D., Liu, J., Gong, Q., Qanmber, G., Li, Y., Lu, L., Lin, Y., Yang, Z., and Li, F., BMC Plant Biol., 2018, vol. 18, p. 330. https://doi.org/10.1186/s12870-018-1526-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao, W.G., Postdoctoral Thesis, Nanjing, P. R. China: Nanjing University, 2008.

  22. Xia, D., Zhou, H., Liu, R., Dan, W., Li, P., Wu, B., Chen, J., Wang, L., Gao, G., Zhang, Q., and He, Y., Mol. Plant, 2018, vol. 11, pp. 754–756. https://doi.org/10.1016/j.molp.2018.03.006

    CAS  Article  PubMed  Google Scholar 

  23. Groszyk, J., Yanushevska, Y., Zielezinski, A., Nadolska-Orczyk, A., Karlowski, W. M., and Orczyk, W., PLoS One, 2018, vol. 13, e0199 364. https://doi.org/10.1371/journal.pone.0199364

    CAS  Article  Google Scholar 

  24. Christov N.K., Christova P.K., Kato H., Liu, Y., Sasaki, K., and Imai, R., Plant Physiol. Biochem., 2014, vol. 84, pp. 251–260. https://doi.org/10.1016/j.plaphy.2014.10.002

    CAS  Article  PubMed  Google Scholar 

  25. Kempa S., Rozhon W., Samaj J., Erban, A., Baluska, F., Becker, T., Haselmayer, J., Schleiff, E., Kopka, J., Hirt, H., Jonak, C., Plant J., 2007, vol. 49, pp. 1076–1090. https://doi.org/10.1111/j.1365-313x.2006.03025.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Richard O., Paquet N., Haudecoeur E., and Charrier, B., J. Mol. Evol., 2005, vol. 61, pp. 99–113. https://doi.org/10.1007/s00239-004-0302-6

    CAS  Article  PubMed  Google Scholar 

  27. Patade, V.Y., Rai, A.N., and Suprasanna, P., Protoplasma, 2011, vol. 248, pp. 613–621. https://doi.org/10.1007/s00709-010-0207-8

    CAS  Article  PubMed  Google Scholar 

  28. Cai Z., Liu J., Wang H., Yang, C., Chen, Y., Li, Y., Pan, S., Dong, R., Tang, G., Barajas-Lopez Jde, D., Fujii, H., and Wang, X., Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 9651–9656. https://doi.org/10.1073/pnas.1316717111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao, D., Zhou, C., Sheng, Y., Liang, G., and Tao, J., Plant Mol. Biol. Rep., 2010, vol. 29, pp. 345–351. https://doi.org/10.1007/s11105-010-0238-5

    CAS  Article  Google Scholar 

  30. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G., Nucleic Acids Res., 1997, vol. 25, pp. 4876–4882. https://doi.org/10.1093/nar/25.24.4876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Tamura, K., Dudley, J., Nei, M., and Kumar, S., Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599. https://doi.org/10.1093/molbev/msm092

    CAS  Article  PubMed  Google Scholar 

  32. Jiang, X., Yao, F., Li, X., Jia, B., Zhong, G., Zhang, J., Zou, X., and Hou, L., Gene, 2015, vol. 565, pp. 122–129. https://doi.org/10.1016/j.gene.2015.04.004

    CAS  Article  PubMed  Google Scholar 

  33. Schmittgen, T.D. and Livak, K.J., Nat. Protoc., 2008, vol. 3, pp. 1101–1108. https://doi.org/10.1038/nprot.2008.73

    CAS  Article  PubMed  Google Scholar 

  34. Schagger, H., Nat. Protoc., 2006, vol. 1, pp. 16–22. https://doi.org/10.1038/nprot.2006.4

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was support by the Nature Science Research Project of Anhui Province (1908085MC76), Science and Technology Innovation Team Project of Anhui Academy of Agricultural Sciences (2020YL045), Sericulture Industry Technology in China Agriculture Research System (CARS-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichu Wang.

Ethics declarations

Conflict of Interests

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Corresponding author: e-mail: wangtaichu123@163.com.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fei Hu, Chen, M., Zhang, Y. et al. Molecular Characterization and Expression Patterns of Shabby-Related Kinase (MmSK) Gene of Mulberry (Morus multicaulis). Russ J Bioorg Chem 46, 768–777 (2020). https://doi.org/10.1134/S1068162020050192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020050192

Keywords:

  • mulberry
  • Shabby-related kinase (MmSK)
  • cloning
  • characterization
  • expression pattern