Skip to main content

Biologically Active Pyridazines and Pyridazinone Derivatives: A Scaffold for the Highly Functionalized Compounds

Abstract

Pyridazine and pyridazinone are heterocycles that contain two adjacent nitrogen atoms and shown wide range of pharmacological activities such as antimicrobial, antidepressant anti-hypertensive, anticancer, antiplatelet, antiulcer, herbicidal, antifeedant and various other anticipated biological activities. Pyridazine ring are present in some commercially available drugs and agrochemicals. Pyridazine based systems have been shown to have numerous practical applications.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. Asif, M., Singh, A., and Lakshmayya., Brazilian J. Pharm. Sci., 2013, vol. 49, pp. 903–909. https://doi.org/10.1590/S1984-82502013000400030

    Article  Google Scholar 

  2. Asif, M., Singh, A., and Lakshmayya., Am. J. Pharmacol. Sci., 2014, vol. 2, pp. 1–6. https://doi.org/10.12691/ajps-2-1-1

    CAS  Article  Google Scholar 

  3. Asif, M., Mini Rev. Med. Chem., 2015, vol. 14, pp. 1093–1103. https://doi.org/10.2174/1389557514666141127143133

  4. Asif, M., Abida, and Imran, M., Int. J. Pharm. Sci. Res., 2020, vol. 11, pp. 826–831. https://doi.org/10.13040/IJPSR.0975-8232.11(2).826-31

    CAS  Article  Google Scholar 

  5. Asif, M., Am. J. Med. Case Rep., 2014, vol. 2, pp. 57–74. https://doi.org/10.12691/ajmcr-2-3-5

    Article  Google Scholar 

  6. Coelho, A., Sotelo, E., Fraiz, N., Yanez., M, Laguna, R., Cano, E., and Ravina, E., Bioorg. Med. & Chem. Lett., 2004, vol. 14, pp. 321–324. https://doi.org/10.1016/j.bmcl.2003.11.009

    CAS  Article  Google Scholar 

  7. Hallot, A., Brodin, R., Merlier, J., Brochard, J., Chambon, J. P., and Biziere, K., J. Med. Chem., 1986, vol. 29, pp. 369–375. https://doi.org/10.1021/jm00153a011

    CAS  Article  PubMed  Google Scholar 

  8. Islam, M., Siddiqui, A. A., Rajesh, R., Bakht, A., and Goel, S., Acta Pol. Pharm., 2008, vol. 65, pp. 353–362. pmid :18646555.

  9. Mikashima, H., Nakao, T., Goto, K., Ochi, H., Yasuda, H., and Tsumagari, T., Thromb. Res., 1984, vol. 35, pp. 589–594. https://doi.org/10.1016/0049-3848(84)90291-3

    CAS  Article  PubMed  Google Scholar 

  10. Okcelik, B., Unlu, S., Banoglu, E., Kupeli, E., Yesilada, E., and Sahin, M.F., Arch. Pharm. Pharm. Med. Chem., 2003, vol. 336, pp. 406–412. https://doi.org/10.1002/ardp.200300778

    CAS  Article  Google Scholar 

  11. Perio, A., Chambon, J.P., Calassi, R., Heaulme, M., and Biziere, K., J. Pharmacol. Exp. Ther., 1986, vol. 239, pp. 542–547.

    CAS  PubMed  Google Scholar 

  12. Pham, H.C., Lasserre, B., Pham, H.C.A., Palhares de, M.A.L., Tronche, P., Couquelet, J., and Rubat, C., Prostag. Leukot. Essent. Fatty Acids., 1988, vol. 33, pp. 143–147. https://doi.org/10.1016/0952-3278(88)90154-8

    Article  Google Scholar 

  13. Sivakumar, R., Anbalagan, N., Gunasekaran, V., and Leonard, J.T., Biol. Pharm. Bull., 2003, vol. 26, pp. 1407–1411. https://doi.org/10.1248/bpb.26.1407

    CAS  Article  PubMed  Google Scholar 

  14. Sivakumar, R., Gnanasam, S.K., Ramachandran, S., and Leonard, J.T., Eur. J. Med. Chem., 2002, vol. 37, pp. 793–801. https://doi.org/10.1016/s0223-5234(02)01405-8

    CAS  Article  PubMed  Google Scholar 

  15. Xu, H., Zou, X.M., Zhu, Y.Q., Liu, B., Tao, H.L., Hu, X.H., Song, H.B., Hu, F.Z., Wang, Y., and Yang, H.Z., Pest Manag. Sci., 2006, vol. 62, pp. 22–30. https://doi.org/10.1002/ps.1195

    CAS  Article  Google Scholar 

  16. Asif, M., J. Chem., 2014, vol. 2014, p. 703238. https://doi.org/10.1155/2014/703238

  17. Asif, M., Curr. Med. Chem., 2012, vol. 19, pp. 2984–2991. https://doi.org/10.2174/092986712800672139

    CAS  Article  PubMed  Google Scholar 

  18. Asif, M., Singh, A., and Siddiqui, A.A., Med. Chem. Res., 2012, vol. 21, pp. 3336–3346. https://doi.org/10.1007/s00044-011-9835-6

    CAS  Article  Google Scholar 

  19. Asif, M., Mini Rev. Org. Chem., 2013, vol. 10, pp. 113–122. https://doi.org/10.2174/1570193X11310020002

    CAS  Article  Google Scholar 

  20. Asif, A., Singh, A., Lakshmayya., Siddiqui, A.A., and Husain, A., Acta Pharm. Sci., 2011, vol. 53, pp. 563–575.

    CAS  Google Scholar 

  21. Knorr, M.A., Chem. Ber., 1885, vol. 18, pp. 299–306.

    Article  Google Scholar 

  22. Tauber, F.D., Chem. Ber., 1895, vol. 28, pp. 361–364.

    Article  Google Scholar 

  23. Contreras, J.M., Parrot, H., and Wermuth, C.G., J. Med. Chem, 2001, vol. 44, pp. 2707–2718. https://doi.org/10.1021/jm001088u

    CAS  Article  PubMed  Google Scholar 

  24. kahane, A., Katayanva, H., and Mitsunga, T., J. Med. Chem., 1999, vol. 42, pp. 779–783. https://doi.org/10.1021/jm980671w

  25. Meade, E.A., Worting, L.L., and Drach, D.C., J. Med. Chem., 1993, vol. 36, pp. 3834–3842. https://doi.org/10.1021/jm00076a011

    CAS  Article  PubMed  Google Scholar 

  26. Altamare, C., Cellamar, S., and Catto, M.T., J. Med. Chem., 1998, vol. 41, pp. 3812–3820. https://doi.org/10.1021/jm981005y

    Article  Google Scholar 

  27. Costantino, L., Rastelli, G., and Mura, V., J. Med. Chem., 1996, vol. 39, pp. 4396–4405. https://doi.org/10.1021/jm960124f

    CAS  Article  PubMed  Google Scholar 

  28. Maciej, J.N., Leszek, L., Jan, F., Andrzej, L., Ludwik, A., The J Physical Chem., 1991, vol. 95, no. 6, pp. 2404–2411. https://doi.org/10.1021/j100159a053

  29. Patel, H.K., and Fernandes, P.S., Ind. J. Chem., 1989, vol. 88, pp. 733–736.

    Google Scholar 

  30. Katrusiak, A., Aatrusiak, A., and Baloniak. S., Tetrahedron, 1994, vol. 50, pp. 12 933–12 940. https://doi.org/10.1016/S0040-4020(01)81212-6

  31. Kraiso Vszky, G., Goal, A., Haider, N., and Matyus, P., J. Mol. Str. (Thieochem), 2000, vol. 13–18, pp. 528–531.

  32. Wermuth, C.G., Schlewer, G., and Bourguignon, J.J., J. Med. Chem., 1989, vol. 32, pp. 528–537. https://doi.org/10.1021/jm00123a004

    CAS  Article  PubMed  Google Scholar 

  33. Livennone, D.G.H., Bethell, R.C., and Cammack, N., J. Med. Chem., 1993, vol. 36, pp. 3784–3742.

    Article  Google Scholar 

  34. Bebot, M., Coudert, P., and Rubat, C., Chem. Pharm. Bull., 1997, vol. 5, pp. 659–667. https://doi.org/10.1248/cpb.45.659

    Article  Google Scholar 

  35. Pieretti, S., Dal Piaz, V., Malucci, R., Giovannoni, M.P., and Galli, A., Life Sci., 1999, vol. 65, pp. 1381–1394. https://doi.org/10.1016/s0024-3205(99)00377-x

    CAS  Article  PubMed  Google Scholar 

  36. Dal Piaz, V, Giovannoni, M.P., Giardiana, G., Barlocco, D., Petrone, G., and Cliuke, D., Eur. J. Med. Chem., 1996, vol. 31, pp. 65–70. https://doi.org/10.1016/S0223-5234(96)80008-0

  37. Giovannoi, M.P., Vergelli, C., Ghelardini, C., Galeotti, N., Bartoiini, A., and Dal Piaz, V., J. Med. Chem., 2003, vol. 46, pp. 1055–1059. https://doi.org/10.1021/jm021057u

    CAS  Article  Google Scholar 

  38. Khan, M.S.Y. and Siddiqui, A.A., Ind. J. Chem., 2000, vol. 39B, pp. 614–619.

    CAS  Google Scholar 

  39. Dal Piaz, V., Ciccani, C., J. Pharm. Sci., 1991, vol. 80, pp. 240–248. https://doi.org/10.1002/jps.2600800412

    Article  Google Scholar 

  40. Matsua, T., Tsukamoto, Y., and Takagi, T., Chem. Pharm. Bull., 1982, vol. 30, pp. 832–842. https://doi.org/10.1248/cpb.30.832

    Article  Google Scholar 

  41. Flohet, F., Rubat, C., and Coudet, P., Chem. Pharm, Bull., 1996, vol. 44, pp. 980–986. https://doi.org/10.1248/cpb.44.980

    Article  Google Scholar 

  42. Rubat, C., Coudet, P., and Tronchi, P., Chem. Pliarm. Bull., 1989, vol. 37, pp. 2832–2835. https://doi.org/10.1248/cpb.37.2832

    CAS  Article  Google Scholar 

  43. Rubat, C., Coudet, P., Albuissim, E., and Tronchi, P.J., Pharm. Sci., 1992, vol. 81, pp. 1084–1087. https://doi.org/10.1002/jps.2600811108

    CAS  Article  Google Scholar 

  44. Dal Piaz, V., Vergelli, C., Giovannoni, M.P., Scheideier, M.A., Fetrone, G., and Zaratani Farniaco, P., 2003, vol. 58, pp. 1063–1071. https://doi.org/10.1016/S0014-827X(03)00162-9

  45. Matsuo, T., Sukanioto, Y., Takaji, T., and Yaginuma, H., Chem. Pharm. Bull., 1982, vol. 30, pp. 1030–1032. https://doi.org/10.1248/cpb.30.1030

  46. Pua, A., Boatto, G., Cerri, P., Falcone, G., and Tronchi, P., Farmaco, 1988, vol. 155, pp. 233–238.

    Google Scholar 

  47. Sing li, C., Brideau, C., Chan, C.C., Savoie, C., Claveau, D., Charleron, S., Gordon, R., Greig, G., Gauther, J.Y., Laue, C.K., Riendeau, D., Thesien, M., Wong, E., and Pvast, P., Bioorg. Med. Lett., 2003, vol. 13, pp. 597–600. https://doi.org/10.1016/s0960-894x(02)01045-4

  48. Nomoto, Y., Takai, H., and Nagashima, K., J. Med. Chem., 1996, vol. 39, pp. 297–303. https://doi.org/10.1021/jm950197j

    CAS  Article  PubMed  Google Scholar 

  49. Siddiqui, A.A., Shehroz, M.M., and Amir, M., Orient. J. Chem., 2004, vol. 20, p. 303. https://doi.org/orientjchem.org/?p=18494

  50. Rubat, C., Coudert, P., Refouvelet, B., Tronche, P., Bashde, P., and Bastide, J., Chem. Pharm. Bull., 1990, vol. 38, pp. 3009–3013. https://doi.org/10.1248/cpb.38.3009

    CAS  Article  Google Scholar 

  51. Verdouw, P.D., Horlog, T.M., Duncker, D.J., Royh, W., and Saxena, P.R., Eur. J. Pharmacol., 1986, vol. 126, pp. 21–30. https://doi.org/10.1016/0014-2999(86)90733-8

  52. Duell, L.D., Bristol, A.J., Weishars, E.R., and Evans, E.D., J. Med. Chem., 1987, vol. 30, pp. 1023–1029. https://doi.org/10.1021/jm00389a011

    Article  PubMed  Google Scholar 

  53. Toma, L., Cignorella, G.J., Barlocco, D., and Ronchetti, F., J. Med. Chem., 1990, vol. 33, pp. 1591–1594. https://doi.org/10.1021/jm00168a010

    CAS  Article  PubMed  Google Scholar 

  54. Combs, D.W., Ranipulla, M.S., Demers, J.P., Flotico, R., and Moore, I.B., J. Med. Chem., 1992, vol. 35, pp. 172–176. https://doi.org/10.1021/jm00079a023

    CAS  Article  PubMed  Google Scholar 

  55. Robertson, D.W., Kmshinski, J.S., Pollock, G.D., Wilson, H., Kauffman, R.F., and Hayes, J.S., J. Med. Chem., 1987, vol. 30, pp. 824–829. https://doi.org/10.1021/jm00388a014

  56. Nedier, G., Delimage, I., Lahouratate, P., Leger, I., Morran, M., and Zimmermann, R.G., Eur. Med. Chem., 1996, vol. 30, pp. 805–812. https://doi.org/10.1016/0223-5234(96)83974-2

  57. Bristol, A.J., Sircar, I., and Moss, H.W., J. Med. Chem., 1987, vol. 30, pp. 1995–1998. https://doi.org/10.1021/jm00394a011

  58. Pita, B., Sotelo, E., Saurez, M., Ravina, E., Ochoa, E., Novoa, H., Blaton, N., Ranter, C., and Peeler, O.M., Tetrahedron., 2000, vol. 6, pp. 2473–2475.  https://doi.org/10.1016/S0040-4039(01)00225-8

    Article  Google Scholar 

  59. Baraladi, P.G., Chirini, A., Leoni, A., Manfredini, S., Simoni, D., and Zanirato, V., J. Het. Chem., 1990, vol. 27, p. 557. https://doi.org/10.1002/jhet.5570270544

  60. Thyes, M., Lehman, H.D., Gries, J., Kretschmar, R., Kunze, J., Lebkucher, R., and Lenke, D., J. Med. Chem., 1983, vol. 6, pp. 800–807. https://doi.org/10.1021/jm00360a004

    Article  Google Scholar 

  61. Nomoto, Y., Takai, H., Ohno, T., Nayashima, K., Yao, K., Yamada, K., Kubo, K., Mihara, A., and Kase, H., J. Med. Chem., 1996, vol. 39, pp. 292–303. https://doi.org/10.1021/jm950197j

    Article  Google Scholar 

  62. Araki, S.I., Vematsu, T., Najashinia, S., Matsuzaki, T., Gotanda, K., Achiai, H.G., Hashimoto, H., and Nakashima, M., Gen. Pharmacol., 1997, vol. 28, pp. 545–553. https://doi.org/10.1016/s0306-3623(96)00302-3

    CAS  Article  PubMed  Google Scholar 

  63. Edward, E.W., and Walter, M.H., J. Hel. Chem., 1986, vol. 23, p. 1515. https://doi.org/10.1002/jhet.5570230540

  64. Combs, D.W., Rampulla, M.J., Beil, S.C., Kiaubert, D.H., Tobia, A.J., Haerlein, B., Weiss. C.L., and Moore, J.B., J. Med. Chem., 1990, vol. 33, pp. 380–386. https://doi.org/10.1021/jm00163a061

    CAS  Article  PubMed  Google Scholar 

  65. Mills, K.J., Arauz, E., Coffey, G.R., and Krzanowski, J.J., and Poison, J.B., Biochem. Phamacol., 1998, vol. 56, pp. 1065–1073. https://doi.org/10.1016/s0006-2952(98)00239-1

    Article  Google Scholar 

  66. Salater, R.A., Howson, W., Swayne, G.T.G., Taylor, E.M., and Reavill, D.R., J. Med. Chem., 1988, vol. 1, pp. 345–351. https://doi.org/10.1021/jm00397a013

  67. Coates, W.J., Prain, H.D., Reeves, M.L., and Warrington, B.H., J. Med. Chem., 1990, vol. 33, pp. 1735–1741. https://doi.org/10.1021/jm00168a031

    CAS  Article  PubMed  Google Scholar 

  68. Sircar, I., Steffen, R.P., Bobovviki, G., Burke, E.S., Newton, S.R., Weishaar, E.R., Bristol. A.T., and Evans, B.D., J. Med. Chem., 1989, vol. 32, pp. 342–350. https://doi.org/10.1021/jm00122a011

  69. Monga, A., Parrado, P., Font, M., and Fernandez- Alvarez, E., J. Med. Chem., 1987, vol. 10, pp. 1029–1035. https://doi.org/10.1021/jm00389a012

    Article  Google Scholar 

  70. Piaz, V.D., Ciciana, G., Turco, G., Giovannoni, M.P., Miceli, M., Pirisino, R., and Perretti, M., J. Pharm. Sci., 1991, pp. 341–348. https://doi.org/10.1002/jps.2600800412

  71. Mikashima, H., Nakao, T., Goto, K., Ochi, H., Yasuda, H., and Tsuniajari, T., Thrombosis Res., 1984, vol. 3, pp. 589–594. https://doi.org/10.1016/0049-3848(84)90291-3

    Article  Google Scholar 

  72. Laguna, R., Linares, B.R., Cano, E., Estevez, L., Ravina, E., and Sotelo, E., Chem. Pharm. Bull., 1997, vol. 45, pp. 1151–1155. https://doi.org/10.1248/cpb.45.1151

    CAS  Article  Google Scholar 

  73. Sotelo, E., Fraiz, N., Yanez, M., Terrades, V., Laguna, R., Cano, E., and Ravina, E., Biorg. Med. Chem. Lett., 2002, vol. 10, pp. 2873–2882. https://doi.org/10.1016/s0968-0896(02)00146-3

    CAS  Article  Google Scholar 

  74. Stolo, E., Cohelo, A., and Ravina, E., Tetrahedron Lett., 2001, vol. 42, pp. 8633–8636. https://doi.org/10.1016/S0040-4039(01)01987-6

  75. Cohelo, A., Sotelo, F., Fraiz, N., Yanez, M., Lajuna, R., Loano, E., and Ravina, E., Bioorg. Med. Chem. Lett., 2004, vol. 14, pp. 321–324. https://doi.org/10.1016/j.bmcl.2003.11.009

    CAS  Article  Google Scholar 

  76. Sotelo, E., Centeno, N.B., Rodrigo, J., and Ravina, E., Tetrahedron., 2002, vol. 58, pp. 2389–2395. https://doi.org/10.1016/S0040-4020(02)00167-9

  77. Cohelo, A., Sotelo, E., Novoa, H., Peter, O.M., and Ravina, E., Tertrahedron Lett., 2004, vol. 45, pp. 3459–3463.https://doi.org/10.1016/j.tetlet.2004.03.005

  78. Subaki, K.T., Taniguchi, K., Tabiichi, S., Okitsu, O., Hattori, K., Seki, J., Sakane, K., and Tanaka, H., Bioorg. Med. Chem., 2000, vol. 10, pp. 2787–2790. https://doi.org/10.1016/s0960-894x(00)00571-0

    Article  Google Scholar 

  79. Corsano, S., Vezza, R., Scapicchi, R., Foresi, S., Strappaghelti, G., Nenci, C.G., and Gresele, P., Eur. J. Med. Chem., 1995, vol. 30, p. 627. https://doi.org/10.1016/0223-5234(96)88267-5

    CAS  Article  Google Scholar 

  80. Sotelo, E., Fraiz, N., Yanez, M., Layuna, R., Cano, E., Brea, J., and Ravina, E., Bioorg. Med. Chem. Lett., 2002, vol. 12, pp. 1375–1377. https://doi.org/10.1016/s0960-894x(02)00246-9

    Article  Google Scholar 

  81. Pita, B., Sotelo, E., Suarez, M., Ravina, E., Chaog, E., Novog, H., Blaton, N., Rauter, C., and Peeteri, O.W., Tetrahedron., 2000, vol. 56, pp. 2473–2478.

    CAS  Article  Google Scholar 

  82. Seki, T., Nakao, T., Masuda, T., Hasumi, K., Gotanda, K., and Yasuda, K., Chem. Pharm. Bull., 1996, vol. 44, pp. 2061–2069. https://doi.org/10.1248/cpb.44.2061

    CAS  Article  Google Scholar 

  83. Cignareila, G., Barlocco, D., and Pinna, G.A., J. Med. Chem., 1989, vol. 32, pp. 2277–2282. https://doi.org/10.1021/jm00130a009

    Article  Google Scholar 

  84. Vega, A.M., Aklana, L., and Font, M., J. Pharm. Sci., 1989, vol. 71, pp. 1406–1408. https://doi.org/10.1002/jps.2600711224

    Article  Google Scholar 

  85. Longo, J.G., Verde, I., and Castro, M.E., J. Pham. Sci., 1993, vol. 82, pp. 286–289. https://doi.org/10.1002/jps.2600820314

    Article  Google Scholar 

  86. Siddiqui, A.A., and Wani, SM., Ind. J. Chem., 2004, vol. 43B, pp. 1574–1579.

    CAS  Google Scholar 

  87. Macevoy, F.J., and Allen, G.R., J. Med. Chem., 1974, vol. 17, pp. 281–286. https://doi.org/10.1021/jm00249a005

    Article  Google Scholar 

  88. Coates, W.J., US Patent, 1985, vol. 4, p. 371.

  89. Ogretir, C., Yarligan, S., Demirayak, S., and Arslan. T., J. Mol. Struct., 2003, vol. 666–667, pp. 609–615. https://doi.org/10.1016/j.theochem.2003.0

  90. Corsano, S., Scapicchi, R., Strappaghetti, G., Mariucci, G., and Papaprelli, F., Eur. J. Med. Chem., 1995, vol. 30, pp. 71–75. https://doi.org/10.1016/0223-5234(96)88211-0

    CAS  Article  Google Scholar 

  91. Montasano, F., Barlocco, D., Dal Piaz, V., Leonardl, A., Poggesi, E., Fanelli, F., and Benedelh, P.G., Bioorg. Med. Chem., 1998, vol. 7, pp. 925–935. https://doi.org/10.1016/S0968-0896(98)00056-X

    Article  Google Scholar 

  92. Corsano, S., Strappagheti, G., Barlocco, R., Giannaccni, G., Betti, L., and Liicacchini, A., Bioorg. Med. Chem., 1999, vol. 7, pp. 933–941. https://doi.org/10.1016/S0968-0896(99)00046-2

    CAS  Article  PubMed  Google Scholar 

  93. Turko, G., Parrado, P., Fernandez-Atvarez, E., N’ovoa, H., Vega, A.M., Verde, I., Demirayak, S., Ravina, E., Hoshimoto, H., and Nakasliima, M., J. Med. Chem., 1991, vol. 34, pp. 381–385.

    Google Scholar 

  94. Nagai, H., Suda, H., Iwama, T., Daikoku, M., Yanagihara, Y., and Khoda, A., Int. Arch. Allergy Immunol., 1992, vol. 98, pp. 57–63. https://doi.org/10.1159/000236164

    CAS  Article  PubMed  Google Scholar 

  95. Suda, H., Nagai, H., Iwaina, T., and Khoda, A., Int. Arch. Allergy Immunol., 1992, vol. 97, pp. 187–193. https://doi.org/10.1159/000236117

    CAS  Article  PubMed  Google Scholar 

  96. Iwama, T., Nagai, H., and Khoda, A., J. Pharm. Pharmacol., 2001, vol. 45, pp. 335–340.

    Google Scholar 

  97. Santhing, R.E., De Boer, J., Vander Zee, N.M., and Zaagsma J., Eur. J. Pharmacol., 2001, vol. 429, pp. 335–344. https://doi.org/10.1016/s0014-2999(01)01333-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Asif.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Corresponding author: e-mail: aasif321@gmail.com.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohd Imran, Mohammad Asif Biologically Active Pyridazines and Pyridazinone Derivatives: A Scaffold for the Highly Functionalized Compounds. Russ J Bioorg Chem 46, 726–744 (2020). https://doi.org/10.1134/S1068162020050155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020050155

Keywords:

  • pyridazine
  • pyridazinone
  • biological activities
  • heterocyclic compounds