Skip to main content

Design and Evaluation of Antimicrobial Activity of New Pyrazole, 1,2,4-Triazole, and 1,3,4-Thiadiazol Derivatives Bearing 1,4-Dihydroquinoxaline Moiety


An effective method for synthesizing a series of fifteen new compounds ethyl 3-(2-(3-amino-1,4-dihydroquinoxaline-2-carbonyl)hydrazono )butanoate (II), 3-amino-N'-benzylidene-1,4-dihydroquinoxaline-2-carbohydrazide dérivatives (IVVI), phenyl)-4-oxothiazolidin-3-yl)-1,4-dihydroquinoxaline-2-carboxamide derivatives (VIIIX), 3-(3-amino-1,4-dihydroquinoxalin-2-yl)-5H-[1,2,4]triazolo[3,4-a]isoindol-5-one (X), 1,4-dihydroquinoxaline-2-carbonyl)-N-substituted hydrazine carbothioamide (XIXII), 5‑(3-amino-1,4-dihydroquinoxalin-2-yl)-4-substituted-4H-1,2,4-triazole-3-thiol (XIIIXIV) and 5-(3-amino-1,4-dihydroquinoxalin-2-yl)-N-substituted-1,3,4-thiadiazol-2-amine (XVXVI) based on 1,4-dihydroquinoxaline moiety in 60–85% yields starting from reaction of hydrazide 3-Amino-1,4-dihydroquinoxaline-2‑carbohydrazide (I) with ethyl acetoacetate has been proposed. The designed compounds have been successfully screened in vitro for their antibacterial and antifungal activities. Structural identifications of the obtained products have been carried out by spectroscopic techniques including FTIR, 1H NMR, 13C NMR, and mass spectroscopy. The relation between the structure of the synthesized compounds and their activity against selected bacteria and fungi was studied and favorable results were obtained. The majority of tested compounds showed moderate antibacterial activities except compound 3-amino-N-(2-(4-chlorophenyl)-4-oxothiazolidin-3-yl)-1,4-dihydroquinoxaline-2-carboxamide (VIII) that notably exhibited the most potent antibacterial activity against the tested Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria. Further antifungal studies indicated that the compounds Ethyl 3-(2-(3-amino-1,4-dihydroquinoxaline-2-carbonyl)hydrazono) butanoate (II), 3-amino-N-(2-(4-chlorophenyl)-4-oxothiazolidin-3-yl)-1,4-dihydroquinoxaline-2-carboxamide (VIII), 3-amino-N-(2-(4-methoxyphenyl)-4-oxothiazolidin-3-yl)-1,4-dihydro quinoxaline-2-carboxamide (IX) and 2-(3-amino-1,4-dihydroquinoxaline-2-carbonyl)-N-phenyl hydrazine carbothioamide (XI) exerted the highest antifungal activities against Aspergillus flavus and Candida albicans fungi.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. Appelbaum, P.C. and Hunter, P.A., Int. J. Antimicrob. Agents, 2000, vol. 16, pp. 5–15.

    CAS  Article  PubMed  Google Scholar 

  2. Ball, P., J. Antimicrob. Chemother., 2000, vol. 46, pp. 17–24.

    CAS  Article  PubMed  Google Scholar 

  3. Desai, N.C., Pandya, D., and Vaja, D., Med. Chem. Res., 2017, vol. 27, pp. 1–9.

    CAS  Article  Google Scholar 

  4. Lu, X., Liu, X., Wan, B., Franzblau, S.G., Chen, L., Zhou, C., and You, Q., Part 2Eur. J Med. Chem., 2012, vol. 49, pp. 164–171.

    CAS  Article  PubMed  Google Scholar 

  5. Carey, J.S., Laffan, D., Thomson, C., and Williams, M.T., Org. Biomol. Chem., 2006, vol. 4, pp. 2337–2347.

    CAS  Article  PubMed  Google Scholar 

  6. Bailly, C., Echepare, S., Gago, F., and Waring, M., J. Anticancer Drug Des., 1999, vol. 14, pp. 291–303.

    CAS  Google Scholar 

  7. Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V., and Raman, A. N., J. Saudi Chem. Soc., 2016, vol. 20, pp. 387–392.

    CAS  Article  Google Scholar 

  8. El-Ashry, E.S.H., Abdel-Rahman, A.A.H., Rashed, N., and Rasheed, H.A., Pharmazie, 1999, vol. 54, pp. 893–897.

    CAS  PubMed  Google Scholar 

  9. Peraman, R., Kuppusamy, R., Killi, S.K., and Reddy, Y.P., Int. J. Med. Chem., 2016, vol. 2016, pp. 1–8.

    CAS  Article  Google Scholar 

  10. El-Atawy, M.A., Hamed, E.A., AlHadi, M., and Omar, A.Z., Molecules, 2019, vol. 24, 4198, pp. 1–16.

    CAS  Article  Google Scholar 

  11. Brock, E.D., Lewis, D.M., Yousaf, T.I., Harper, H.H., U.S. Patent no. WO 9951688, 1999.

  12. Carta, A., Loriga, M., Paglietti, G., Mattana, A., Fiori, P.L., Mollicotti, P., Sechi, L., Zanetti, S., Eur. J. Med. Chem., 2004, vol. 39, pp. 195–203.

    CAS  Article  PubMed  Google Scholar 

  13. Burguete, A., Pontiki, E., Hadjipavlou-Litina, D., Ancizu, S., Villar, R., Solano, B., Moreno, E., Torres, E., Pérez, S., Aldana, I., Monge, A., Chem. Biol. Drug. Des., 2011, vol. 77, pp. 255–267.

    CAS  Article  PubMed  Google Scholar 

  14. Gihsoy, A., Terzioglu, N., Otuk, G., Eur. J. Med. Chem., 1997, vol. 32, pp. 753–757.

    Article  Google Scholar 

  15. Rollas, S., Gulerman, N., Erdeniz, H., Farmaco, 2002, vol. 57, pp. 171–174.

    CAS  Article  PubMed  Google Scholar 

  16. Dikio, C.W., Okoli, B.J., Mtunzi, F.M., Cogent. Chem., 2017, vol. 3, pp. 1–14.

    CAS  Article  Google Scholar 

  17. Lekshmy, R.K., Thara, G.S., AIP Conf. Proc., 2014, vol. 1620, pp. 230–234.

    CAS  Article  Google Scholar 

  18. El-Faham, A., Farooq, M., Khattab, S.N., Elkayal, A.M., Ibrahim, M.F., Abutaha, N., Wadaan, M.A., Hamed, E.A., Chem. Pharm. Bull., 2014, vol. 62, pp. 591–599.

    CAS  Article  Google Scholar 

  19. Holla, B.S., Poorjary, K.N., Rao, B.S., Shivananda, M.K., Eur. J. Med. Chem., 2002, vol. 37, pp. 511–517.

    Article  PubMed  Google Scholar 

  20. Yousif, E., Majeed, A., Al-Sammarrae, K., Salih, N., Salimon, J., Abdullah, B., Arabian. J. Chem., 2013, vol. 10, pp. 1639–1644.

    CAS  Article  Google Scholar 

  21. Elkanzi, N.A.A., Ghoneim, A.A., Hrichi, H., Chem. J. Mold, 2019, vol. 14, pp. 105–116.

    CAS  Article  Google Scholar 

  22. Hrichi, H., Elkanzi, N.A.A., R.J.L.B.P.C.S., 2018, vol. 4, pp. 690–706.

  23. El Azab, I.H., Elkanzi, N.A.A., Gobouria, A.A., J. Heterocycl. Chem., 2018, vol. 55, pp. 65–76.

    CAS  Article  Google Scholar 

  24. Komykhov, S.A., Ostras, K.S., Kostanyan, A.R., Desenko, S.M., Orlov, V.D., Meier, H., J. Heterocycl. Chem., 2005, vol. 42, pp. 1111–1116.

    CAS  Article  Google Scholar 

  25. NCCLS., Approved standard NCCLS M38-A., National Committee for Clinical Laboratory Standards, Wayne, 2002.

Download references


The financial support from Jouf University, Saudi Arabia, and Aswan University, Aswan, Egypt is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nadia Ali Ahmed Elkanzi.

Ethics declarations


This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Corresponding author: e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nadia Ali Ahmed Elkanzi, Hajer Hrichi Design and Evaluation of Antimicrobial Activity of New Pyrazole, 1,2,4-Triazole, and 1,3,4-Thiadiazol Derivatives Bearing 1,4-Dihydroquinoxaline Moiety. Russ J Bioorg Chem 46, 715–725 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • pyrazole
  • quinoxaline
  • carbohydrazide
  • thiadiazoles
  • antibacterial
  • antifungal