Skip to main content

Synthesis, In Vitro Anti-HIV Activity, Cytotoxicity, and Computational Studies of Some New Steroids and Their Pyrazoline and Oxime Analogues


There is an urgent need for the design and development of new and safer drugs for the treatment of HIV infection, active against the currently resistant viral strains by development of new non-nucleoside reverse transcriptase inhibitors (NNRTIs). A series of pregnenolone analogues, 3-((aryl)-1-(5-pregnen-3β-ol-17-yl)prop-2-en-1-ones, were synthesized. Further, treatment of 3-((4-bromo-, 4-trifluoromethyl, or 4-methylphenyl)-1-(preg-5-en-3β-ol-17-yl)prop-2-en-1-ones with thiosemicarbazide in ethanolic KOH or hydrazine hydrate in HOAc gave 5-(4-bromo-, 4-trifluoromethyl, or 4-methylphenyl)-3-(preg-5-en-3β-ol-17-yl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides and 1-O-acetyl-(5-(4-bromophenyl)-3-(preg-5-en-3β-ol-17-yl)-4,5-dihydro-1H-pyrazoline, respectively. Analogously, treatment of 3-((4-bromophenyl)-1-(preg-5-en-3β-ol-17-yl)prop-2-en-1-one with hydroxylamine afforded the Z/E isomers of 3-(4-bromophenyl)-1-(preg-5-en-3β-ol-17-yl)prop-2-en-1-one oxime. The new compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. Compounds 3-(thiophene-2-yl)-1-(preg-5-en-3β-ol-17-yl)prop-2-en-1-one and 1-O-acetyl-(5-(4-bromophenyl)-3-(preg-5-en-3β-ol-17-yl)-4,5-dihydro-1H-pyrazoline were the most active in inhibiting HIV-1 and HIV-2 with IC50 = 60.5 μM (SI > 2, against HIV-2 and SI < I against HIV-1), and > 0.29 μM (SI < I), respectively, suggesting to be new leads in the development of antiviral agents. QSAR of 3-((aryl)-1-(5-pregnen-3β-ol-17-yl)prop-2-en-1-ones and 5-(substituted phenyl)-3-(5-preg-5-3β-ol-17-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamides has been studied. The conformational analysis of 5-(4-trifluoromethylphenyl)-3-(preg-5-en-3β-ol-17-yl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide and 1-O-acetyl-(5-(4-bromophenyl)-3-(preg-5-en-3β-ol-17-yl)-4,5-dihydro-1H-pyrazoline as well as the molecular docking study of the latter compound have been investigated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Ambrosy, A.P., Butler, J., Ahmed, A., Vaduganathan, M., van Veldhuisen, D.J., Colucci,

  2. W.S., and Gheorghiade, M., J. Am. Coll. Cardiol., 2014, vol. 63, pp. 1823–1832.

    CAS  Article  Google Scholar 

  3. Latham, K.A., Zamora, A., Drought, H., Subramanian, S., Matejuk, A., Offner, H., and Rosloniec, E.F., J. Immunol., 2003, vol. 171, pp. 5820–5827.

    CAS  Article  PubMed  Google Scholar 

  4. Dietrich, J., Rao, K., S. Pastorino, and Kesari, S., Expert. Rev. Clin. Pharmacol., 2011, vol. 4, pp. 233–242.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Rassokhina, I.V., Volkova, Y.A., Kozlov, A.S., Scherbakov, A.M., Andreeva, O.M., Shirinian, V.Z., and Zavarzin, I.V., Steroids, 2016, vol. 113, pp. 29–37. 2016.06.001

  6. Spadari, A., Romagnoli, N., Predieri, P.G., Borghetti, P., Cantoni, A.M., Corradi, A., Res. Veter. Sci., 2013, vol. 94, pp. 379–387.

    CAS  Article  Google Scholar 

  7. Moreira, V.M., Vasaitis, T.S., Njar, V., and Salvador, J.A.R., Steroids, 2007, vol. 72, pp. 939–948.

    CAS  Article  PubMed  Google Scholar 

  8. Banday, A.H., Shameem, S.A., Gupta, B.D., and Kumar, H.M.S., Steroids, 2010, vol. 75, pp. 801–804.

    CAS  Article  PubMed  Google Scholar 

  9. de Bono, J.S., Logothetis, C.J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K.N., Jones, R.J., and Goodman, O.B., Saad, F., Staffurth, J.N., Mainwaring, P., Harland, S., Flaig, T.W., Huston, T.E., Cheg, T., Patterson, H., Hainsworth, J.D., Ryan, C.J., Sternberg, C.N., Ellard, S.L., Fléchon, A., Saleh, M., Scholz, M., Efstathiou, E., Zivi, A., Bianchini, D., Loriot, Y., Chieffo, N., Kheoh, N., Haqq, C.M., and Scher, H., N. Engl. J. Med., 2001, vol. 364, pp. 1995–2005.

    Article  Google Scholar 

  10. Bryce, A. and Ryan, C.J., Clin. Pharmacol. Ther., 2012, vol. 91, pp. 101–108.

    CAS  Article  PubMed  Google Scholar 

  11. Handratta, V.D., Vasaitis, T.S., Njar, V.C., Gediya, L.K., Kataria, R., Chopra, P., Newman, D., Farquhar, R., Guo, Z., Qiu, Y., and Brodie, A.M., J. Med. Chem., 2005, vol. 48, pp. 2972–2984.

    CAS  Article  PubMed  Google Scholar 

  12. Banday, A.H., Zargar, and M.I., Ganaie, B.A., Steroids, 2011, vol. 76, pp. 1358–1362.

  13. Lone, I.H., Khan, K.Z., Fozdar, B.I., and Hussain, F., Steroids, 2013, vol. 78, pp. 945–950.

  14. Banday, A.H., Akram, S.S.M., and Shameem, S.A., Steroids, 2014, vol. 84, pp. 64–69.

    CAS  Article  PubMed  Google Scholar 

  15. Sisodia, B.S., Negi, S.A., Darokar, M.P., Dwivedi, U.N., and Khanuja, S.P., Chem. Biol. Drug Des., 2012, vol. 79, pp. 610–615.

    CAS  Article  PubMed  Google Scholar 

  16. Banday, A.H., Shameem, S.A., and Jeelani, S., Steroids, 2014, vol. 92, pp. 13–19.

    CAS  Article  PubMed  Google Scholar 

  17. Choudhary, M.I., Alam, M.S., Atta-ur-Rahman, Yousuf, S., Wu, Y.-C., Lin, A.-S., and Shaheen, F., Steroids, 2011, vol. 76, pp. 1554–1559. 2011.09.006

  18. Pinto-Bazurco M.M.A., Negri, M., Jagusch, C., Müller-Vieira, U., Lauterbach, T., and Hartmann, R.W., J. Med. Chem., 2018, vol. 51, pp. 5009–5018.

    CAS  Article  Google Scholar 

  19. Salvador, J.A.R., Moreira, V.M., and Silvestre, S.M., Steroidal CYP17 inhibitors for prostate cancer treatment: from concept to clinic, in Advances in Prostate Cancer, Hamilton, G., Ed., Rijeka, Croatia: InTech, 2013, chapter 12, pp. 275–304.

    Book  Google Scholar 

  20. Haidar, S., Ehmer, P.B., Barassin, S., Batzl-Hartmann, C., Hartmann, R.W., J. Steroid. Biochem. Mol. Biol., 2003, vol. 84, pp. 555–562.

  21. Al-Masoudi, N.A., Ali, D.S., Saeed, B., Hartmann, R.W., Engel, M., and Rashid, S., Arch. Pharm. Chem. Life Sci., 2014, vol. 374, pp. 896–907.

    CAS  Article  Google Scholar 

  22. Al-Masoudi, N.A., Mahdi, K.M., Abdul-Rida, N.A., Saeed, B.A., and Engel, M., Steroids, 2015, vol. pp. 52–59.

  23. Al-Masoudi, N.A., Kadhim, R.A., Abdul-Rida, N.A., Saeed, B.A., and Engel, M., Steroids, 2015, vol. 101, pp. 43–50.

    CAS  Article  PubMed  Google Scholar 

  24. Mahdi, K.M., N Abdul-Rida, N.A., and Al-Masoudi, N.A., Eur. J. Chem., 2015, vol. 6, pp. 1–7.

  25. Karthikeyan, C., Moorthy, N.S.H.N., Ramasamy, S., Vanam, U., Manivannan, E., Karunagaran, D., and Trivedi, P., Recent Pat. Anticancer Drug Discov., 2015, vol. 10, pp. 97–115.

    CAS  Article  PubMed  Google Scholar 

  26. Dominguez, J.N., León, C., Rodrigues, J., de Dominguez, N.G., Gut, J., and Rosenthal, P.J., J. Med. Chem., 2005, vol. 48, pp. 3654–3658.

    CAS  Article  PubMed  Google Scholar 

  27. Lee, S.H., Seo, G.S., Kim, J.Y., Jin, X.Y., Kim, H.D., and Sohn, D.H., Eur. J. Pharmacol., 2006, vol. 532, pp. 178–186.

    CAS  Article  PubMed  Google Scholar 

  28. Al-Hazam, H.A., Al-Shamkani, Z.A., Al-Masoudi, N.A., Saeed, B.A., and Pannecouque, C., Z. Naturforsch., 2017, vol. 72, pp. 249–256.

    CAS  Article  Google Scholar 

  29. Rizvi, S.U.F., Siddiqui, H.L., Johns, M., Detorio, M., and Schinazi, R.F., Med. Chem. Res., 2012, vol. 21, pp. 3741–3749.

    CAS  Article  Google Scholar 

  30. Svetaz, L., Tapia, A., Lopez, S.N., Furlan, R.L.E., Petenatti, E., Pioli, R., Schmeda-Hirschmann, G., and Zacchino, S.A., J. Agric. Food Chem., 2004, vol. 52, pp. 3297–3300. 13x

  31. Willker, W., Leibfritz, D., Kerssebaum, R., and Bermel, W., Magn. Reson. Chem., 1993, vol. 31, pp. 287–292.

    CAS  Article  Google Scholar 

  32. Pannecouque, C., Daelemans, D., and De Clercq, E., Nat. Protoc., 2008, vol. 3, pp. 427–434.

    CAS  Article  PubMed  Google Scholar 

  33. Hargrave, K.D., Proudfoot, J.R., Grozinger, K.G., Cullen, E., Kapadia, S.R., Patel, U.R., Fuchs, V.U., Mauldin, S.C., Vitous, J., Behnke, M.L., Klunder, J.M., Pal, K., Skiles, J.W., McNieil, D.W., Rose, J.M., Chow, G.C., Skoog, M.T., Wu, J.C., Schmidt, G., Engel, W.E., Eberlein, W.G., Saboe, T.D., Rosenthal, A.S., and Adams, J., J. Med. Chem., 1991, vol. 34, pp. 2231–2241.

    CAS  Article  PubMed  Google Scholar 

  34. Mitsuya, H., Weinhold, K.J., Furman, P.A., St. Clair, M.H., Lehrmann, H.N., Gallo, R.C., Bolognesi, D., Barry, D.W., and Broder, S., Proc. Natl. Acad. Sci. U. S. A., 1985, vol. 82, pp. 7096–7100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Ducki, S., Forrest, R., Hadfield, J.A., Kendall, A., Lawrence, N.J., McGown, A.T., David, D., and Rennison, D., Bioorg. Med. Chem. Lett., 1998, vol. 8, pp. 1051–1056. (98)00162-0

  36. Becke, A.D., J. Chem. Phys., 1993, vol. 98, pp. 5648–5652.

    CAS  Article  Google Scholar 

  37. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., et al., Gaussian, Inc., Wallingford CT, 2016.

  38. Molecular Operating Enviroment (MOE), 2013.08, Chemical Computing Group ULC, 1010 Sherbooks St. West, Suit #910, Montreal, QC, Canada, H3A 2R7, 2018.

  39. Ren, J., Chamberlain, P.P., Stamp, A., Short, S.A., Weaver, K.L., Romines, K.R., Hazen, R., Freeman, A., Ferris, R.G., Andrews, C.W., Boone, L., Chan, H.H., and Stammers, D.K., J. Med. Chem., 2008, vol. 51, pp. 5000–50 008.

    CAS  Article  PubMed  Google Scholar 

  40. Sahu, V.K., Khan, A.K.R., Singh, R.K., and Singh, P.P., Am. J. Immunol., 2008, vol. 4, pp. 33–42.

    CAS  Article  Google Scholar 

  41. DMOL3User Guide, San Diego, CA, USA: Accelrys, Inc., 2003.

  42. Rogers, D., and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 1994, vol. 34, pp. 854–866.

    CAS  Article  Google Scholar 

  43. Popovic, M., Sarngadharan, M.G., Read, E., and Gallo, R.C., Science, 1984, vol. 224, pp. 497–500.

    CAS  Article  PubMed  Google Scholar 

  44. Barré-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre. M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., and Montagnier, L., Science, 1983, vol. 220, pp. 868–871.

    Article  PubMed  Google Scholar 

  45. Miyoshi, I., Taguchi, H., Kobonishi, I., Yoshimoto, S., Ohtsuki, Y., Shiraishi, Y., and Akagi, T., Gann. Monogr. Cancer Res., 1982, vol. 28, pp. 219–228.

    Google Scholar 

Download references


W. Al-Masoudi would like to thank College of Verterinary, Basrah University, Iraq, for the sabbatical leave. We thank Miss A. Friemel of the Chemistry, Department, Konstanz University, Germany, for the 2D NMR experiments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Najim A. Al-Masoudi.

Ethics declarations


This article does not contain any studies involving human participants performed by any of the authors and does not contain any studies involving animals performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Corresonding author: e-mail: (web:

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wasfi A. Al-Masoudi, Al-Masoudi, N.A., Saeed, B.A. et al. Synthesis, In Vitro Anti-HIV Activity, Cytotoxicity, and Computational Studies of Some New Steroids and Their Pyrazoline and Oxime Analogues. Russ J Bioorg Chem 46, 822–836 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • anti-HIV activity
  • α-unsaturated ketones
  • cytotoxicity
  • molecular docking study
  • QSAR
  • pregnenolone