Skip to main content

The Nature of the Inhibitory Action of Anionic Polyamidoamine Dendrimers of Generation 1.5–3.5 on the Activity of the Fibrinolytic System


Polyamidoamine (PAMAM) dendrimers are used in medicine for systemic drug delivery. The safety assessment of biomaterials, which come into contact with blood components and tissues is especially important. For example, PAMAM-NH2 dendrimers G4–G7 cause platelet and fibrinogen aggregation. We have studied the effect of the PAMAM-COOH dendrimers G1.5–G3.5 on key components of the fibrinolysis system. The dendrimers have not affected the plasmin activity. However, the amidolytic activities of tissue activators of plasminogen (tPA) and urokinase (uPA) have decreased markedly with increasing the dendrimer concentration and generation. The peak intensity at 340 nm of Glu-plasminogen fluorescence in the absence and presence of 0.15 M NaCl has decreased with increasing the dendrimer concentration, thus indicating the change in the microenvironment of the Trp residues and molecular conformation of the open and closed Glu-plasminogen forms. A comparison of the fluorescence quenching constants suggests that the anionic dendrimer and chloride ion simultaneously bind to Glu-plasminogen and each of these ligands exerts its independent effects through the separate binding sites. With increasing the dendrimer concentration, the rate of the tPA- and uPA-induced activation of Glu-plasminogen has dramatically decreased due probably to the formation of dendrimer*plasminogen complexes with the increasing dendrimer content, which makes the plasminogen bond increasingly unavailable for the cleavage by the activators. The rate of tPA- and uPA-induced lysis of the plasma clot in plasma has moderately decreased with increasing the dendrimer concentration due probably to the reduced effect of the dendrimer on the fibrin-bound plasminogen. Thus, the nature of the inhibitory action of the anionic PAMAM dendrimers on the Glu-plasminogen activation and tPA- and uPA-induced thrombolysis consists of a noticeable inactivation of the activators and a significant change in plasminogen conformation. The PAMAM-COOH dendrimers in circulation can affect other physiological and pathological processes, which are associated with an important role of the plasminogen/plasmin system.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Tomalia, D., Prog. Polym. Sci., 2005, vol. 30, pp. 3–4.

    Google Scholar 

  2. Srinivasa-Gopalan, S. and Yarema, K., Nanotechnol. Life Sci., 2007, vol. 7, pp. 1–43.

    Google Scholar 

  3. Kannan, S., Dai, H., Navath, R.S., Balakrishnan, B., Jyoti, A., Janisse, J., Romero, R., and Kannan, R.M., Sci. Transl. Med., 2012, vol. 4, pp. 130–146.

    Article  Google Scholar 

  4. Cheng, Y., Wang, J., Rao, T., He, X., and Xu, T., Front. Biosci., 2008, vol. 1, pp. 1447–1471.

    Article  Google Scholar 

  5. Wyszogrodzka, M. and Haag, R., Chemistry, 2008, vol. 14, pp. 9202–9214.

    CAS  Article  Google Scholar 

  6. Orive, G., Hernandez, R., Gascon, A., and Pedraz, J.L., Cancer Ther., 2005, vol. 3, pp. 131–138.

    Google Scholar 

  7. Patri, A., Majoros, I., and Baker, J., Curr. Opin. Chem. Biol., 2002, vol. 6, pp. 466–471.

    CAS  Article  Google Scholar 

  8. Madaan, K., Kumar, S., Poonia, N., Lather, V., and Pandita, D., J. Pharm. Bioall. Sci., 2014, vol. 6, pp. 139–150.

    Article  Google Scholar 

  9. Bielinska, A., Eichman, J.D., Lee, I., Baker, J.R.Jr., and Balogh, L., J. Nanoparticle Res., 2002, vol. 4, pp. 395–403.

    CAS  Article  Google Scholar 

  10. Shadrack, D.M., Swai, H.S., Munissi, J.J.E., Mubofu, E.B., and Nyandoro, S.S., Molecules, 2018, vol. 23, p. 1419.

    Article  Google Scholar 

  11. Pan, B., Cui, D., Xu, P., Ozkan, C., Feng, G., Ozkan, M., Huang, T., Chu, B., Li, Q., He, R., and Hu, G., Nanotecnology, 2009, vol. 20, p. 125 101.

    Article  Google Scholar 

  12. Mukhametova, L.I., Aisina, R.B., Zakharyan, E.M., Karakhanov, E.A., Gershkovich, K.B., and Varfolomeyev, S.D., Thromb. Res., 2017, vol. 154, pp. 50–52.

    CAS  Article  Google Scholar 

  13. Han, M.H., Chen, J., Wang, J., Chen, S.L., and Wang, X.T., J. Biomed. Nanotechnol., 2010, vol. 6, pp. 82–92.

    CAS  Article  Google Scholar 

  14. Greish, K., Thiagarajan, G., Herd, H., Price, R., Bauer, H., Hubbard, D., Burckle, A., Sadekar, S., Anwar, T., Yu, A., Ray, A., and Ghandehari, H., Nanotoxicology, 2012, vol. 6, pp. 713–723.

    CAS  Article  Google Scholar 

  15. Wang, W., Xiong, W., Zhu, Y., Xu, H., and Yang, X., J. Biomed. Mater. Res., 2010, vol. 93, pp. 59–64.

    Google Scholar 

  16. Diaz, C., Benitez, C., Vidal, F., Barraza, L.F., Jimenez, V.A., Guzman, L., Fuenteala, J., Yevenes, G.E., and Alderete, J.B., Nanomed.: Nanotechnol. Biol. Med., 2018, vol. 14, pp. 2227–2234.

    CAS  Article  Google Scholar 

  17. Jones, C.F., Campbel, R.A., Franks, Z., Gibson, C.C., Thiagarajan, G., Vieira-de-Abreu, A., Sukavaneshvar, S., Mohammad, S.F., Li, D.Y., Ghandehari, H., Weyrich, A.S., Brooks, B.D., and Grainger, D.W., Mol. Pharm., 2012, vol. 9, pp. 1599–1611.

    CAS  Article  Google Scholar 

  18. Jones, C.F., Campbell, R.A., Brooks, A.E., Assemi, S., Tadjiki, S., Thiagarajan, G., Mulcock, Ch., Weyrich, A.S., Brooks, B.D., Ghandehari, H., and Grainger, D.W., ACS Nano, 2012, vol. 6, pp. 9900–9910.

    CAS  Article  Google Scholar 

  19. Dobrovolskaia, M.A., Patri, A.K., Simak, J., Hall, J.B., Semberova, J., De Paoli, Lacerda, S.H., and McNeil, S.E., Mol. Pharm., 2012, vol. 9, pp. 382–393.

    CAS  Article  Google Scholar 

  20. Watala, C., Karolczaka, K., Kassassira, H., Talara, M., Przygodzkia, T., Maczynskaa, K., and Labieniec-Watala, M., Int. J. Pharm., 2016, vol. 503, pp. 247–261.

    CAS  Article  Google Scholar 

  21. Fu, Y., Hu, R., Li, C., Wang, Q., Liu, Z., and Xue, W., J. Bioact. Compat. Polym., 2014, vol. 29, pp. 165–179.

    CAS  Article  Google Scholar 

  22. Markowicz-Piasecka, M., Sadkowska, A., Podsiedlik, M.E., Mikiciuk-Olasik, E., and Sikora, J., Toxicol. In Vitro, 2019, vol. 59, pp. 87–99.

    CAS  Article  Google Scholar 

  23. Aisina, R., Mukhametova, L., and Ivanova, E., Mater. Sci. Eng. C, 2020, vol. 109, p. 110 605.

    Article  Google Scholar 

  24. Wang, X., Inapagolla, R., Kanna, S., Lieh-Lai, M., and Kannan, R.M., Bioconjug. Chem., 2007, vol. 18, pp. 791–799.

    CAS  Article  Google Scholar 

  25. Aisina, R.B., Mukhametova, L.I., Gershkovich, K.B., Ivanova, E.M., Zakharyan, E.M., and Karakhanov, E.A., Russ. J. Bioorg. Chem., 2018, vol. 44, pp. 528–537.

    CAS  Article  Google Scholar 

  26. Singh, P., Bioconjug. Chem., 1998, vol. 9, pp. 54–63.

    CAS  Article  PubMed  Google Scholar 

  27. Thomas, T.P., Patri, A.K., Myc, A., Myaing, M.T., Ye, J.Y., Norris, T.B., and Baker, J.R., Jr., Biomacromolecules, 2004, vol. 5, pp. 2269–2274.

    CAS  Article  Google Scholar 

  28. Bustos, E. and Godinez, L.A., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 1–36.

    CAS  Google Scholar 

  29. Law, R.H.P., Caradoc-Davies, T., Cowieson, N., Horvath, A.J., Quek, A.J., Encarnacao, J.A., Steer, D., Cowan, A., Zhang, Q., Lu, B.G., Pike, R.N., Smith, A.I., Coughlin, P.B., and Whisstock, J.C., Cell Rep., 2012, vol. 1, pp. 185–190.

    CAS  Article  Google Scholar 

  30. Ponting, C.P., Marshall, J.M., and Cederholm-Williams, S.A., Blood Coagul. Fibrinolysis, 1992, vol. 3, pp. 605–614.

  31. Aisina, R.B. and Mukhametova, L.I., Russ. J. Bioorg. Chem., 2014, vol. 40, pp. 590–605.

    CAS  Article  Google Scholar 

  32. Castellino, F.J. and Ploplis, V.A., Thromb. Haemost., 2005, vol. 93, pp. 647–654.

    CAS  Article  Google Scholar 

  33. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, 3rd ed., Springer US, 2006.

    Book  Google Scholar 

  34. Urano, T., Chibber, B.A.K., and Castellino, F.J., Proc. Natl. Acad. Sci. U. S. A., 1987, vol. 84, pp. 4031–4034.

    CAS  Article  Google Scholar 

  35. Urano, T., de Serrano, V.S., Chibber, B.A.K., and Castellino, F.J., J. Biol. Chem., 1987, vol. 262, pp. 15 959–15 964.

    Google Scholar 

  36. Rijken, D.C., Hoylaerts, M., and Collen, D., J. Biol. Chem., 1982, vol. 257, pp. 2920–2925.

    CAS  PubMed  Google Scholar 

  37. Duffy, M.G., Fibrinolysis, 1993, vol. 7, pp. 295–302.

    CAS  Article  Google Scholar 

  38. Levashov, M.Yu., Aisina, R.B., Gershkovich, K.B., and Varfolomeyev, S.D., Biochemistry (Moscow), 2007, vol. 72, pp. 680–685.

    Google Scholar 

  39. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    CAS  Article  Google Scholar 

  40. Aisina, R., Mukhametova, L., Gershkovich, K., and Varfolomeyev, S.D., Biochim. Biophys. Acta, 2005, vol. 1725, pp. 370–376.

    CAS  Article  Google Scholar 

  41. Aisina, R., Mukhametova, L., and Varfolomeyev, S., Biochim. Biophys. Acta, 2016, vol. 1860, pp. 629–635.

    CAS  Article  Google Scholar 

Download references


The work was supported by the funds of the State Registration topic no. AAA-A16-116052010081-5 “Molecular design, structural and functional analysis and regulation of enzyme systems, cell structures, and bionanomaterials: fundamentals and applications in technology, medicine, and environmental protection.”

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. B. Aisina.

Ethics declarations


This article does not contain any studies with the use of humans as objects of research.

Conflict of Interests

The authors state that there is no conflict of interest.

Additional information

Translated by A. Levina

Abbreviations: FM, fibrin monomer; Glu-Pg and Lys-Pg, Glu- and Lys-forms of plasminogen; KR, kringle domain; LBS, lysine-binding site; PAMAM G1.5, G2.5, and G3.5, polyamidoamine dendrimers of 1.5, 2.5, and 3.5 generations; Pap, N‑terminal peptide; Pg, plasminogen; tPA, tissue plasminogen activator; uPA, double-stranded urokinase.

Corresponding author: phone: +7 (495) 939-50-83; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aisina, R.B., Mukhametova, L.I. & Ivanova, E.M. The Nature of the Inhibitory Action of Anionic Polyamidoamine Dendrimers of Generation 1.5–3.5 on the Activity of the Fibrinolytic System. Russ J Bioorg Chem 46, 787–797 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • plasminogen
  • plasminogen activators
  • activation
  • inhibition
  • dendrimers