Skip to main content

X-Ray Structure, DFT Study of p-Chlorobenzoic Acid, and the Effect of In Silico Molecular Docking on Tankyrase I Enzyme

Abstract

p-Chlorbenzoic acid carries a 4-chloro position atom where it may be important in coordinated with and control certain biological parameters , it can inhibit the action of specific enzyme in organisms. X‑ray data collection gives information about the analysis of the covalent and the non-covalent interactions in 3D quantitatively. Recrystallization of p-chlorobenzoic acid was carried out to remove any impurities and to be prepared in pure crystal form. X-ray analytical technique studied the structure and geometrical parameters. The experimental data were compared with the calculated ones for the optimized structure obtained from density functional theory (DFT) studies. X-ray structure of p-chlorobenzoic acid is found in dimer form stabilized with intermolecular H-bond interaction. Infrared spectra and thermal analysis of this compound were studied. DFT calculations were carried out and structural geometrical parameters were evaluated. In-silico molecular docking of tested ligand in Tankyrase I enzyme shows a number of hydrogen bond interactions, chlorine and aromatic ring interaction and polar contact, these predicted interactions can inhibit the active sites of amino acids of Tankyrase I enzyme, so this inhibition can control some biological activities especially anticancer effect.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Minatchy, S. and Mathew, N., Ind. J. Chem., 1998, vol. 37B, p. 1066.

    CAS  Google Scholar 

  2. Mani, P., Ph.D. Thesis, Pondicherry University, 2004.

  3. Wang, S.Y., Chou, C.-Y., and Liang, N.T., J. Raman. Spectrosc., 1988, vol. 19, p. 365.

    CAS  Article  Google Scholar 

  4. Furic, K. and Durig, J. R., Chem. Phys. Lett., 1986, vol. 126, p. 92.

    CAS  Article  Google Scholar 

  5. Lee, A.S. and Li, Y.S., Spectrochim. Acta A, 1996, vol. 52, p. 173.

    Article  Google Scholar 

  6. Sundaraganesana, N., Joshuab, B. D., and Radjakoumar, T., Ind. Pure Appl. Phys., 2009, vol. 47, pp. 248–258.

    Google Scholar 

  7. Chojnacki, H., Institute of Physical and Theoretical Chemistry, Laboratory of Quantum Chemistry, I-30, Wrocław University of Technology, Wyb. Wyspiañskiego Wroclaw, Poland, 2003, vol. 27, pp. 50–370.

  8. Cleland, D. and Kreevoy, M.W., Science, 1994, vol. 264, pp. 1887–1890.

    CAS  PubMed  Google Scholar 

  9. Riffell, J.L., Lord, C.J., and Ashworth, A., Nat. Rev. Drug Discov., 2012, vol. 11, pp. 923–936.

    CAS  PubMed  Google Scholar 

  10. Malanga, M. and Althaus, F.R., Biochem. Cell Biol., 2005, vol. 83, pp. 354–364.

    CAS  PubMed  Google Scholar 

  11. Leung, A.K., Vyas, S., Rood, J.E., Bhutkar, A., Sharp, P.A., and Chang, P., Mol. Cell, 2011, 42, 489–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Koh, D.W., Dawson, T.M., and Dawson, V.L., Pharmacol. Res., 2005, vol. 52, pp. 5–14.

    CAS  PubMed  Google Scholar 

  13. Chang, P., Jacobson, M.K., and Mitchison, T.J., Nature, 2004, vol. 432, pp. 645–649.

    CAS  PubMed  Google Scholar 

  14. Kraus, W.L. and Lis, J.T., Cell, 2003, vol. 113, pp. 677–683.

    CAS  PubMed  Google Scholar 

  15. Schreiber, V., Dantzer, F., Ame, J.C., and de Murcia, G., Nat. Rev. Mol. Cell Biol., 2006, vol. 7, pp. 517–528.

    CAS  Google Scholar 

  16. Vyas, S., Chesarone-Cataldo, M., Todorova, T., Huang, Y.H., and Chang, P., Nat. Commun., 2013, vol. 4, p. 2240.

    PubMed  PubMed Central  Google Scholar 

  17. Durkacz, B.W., Omidiji, O., Gray, D.A., and Shall, S., Nature, 1980, vol. 283, pp. 593–596.

    CAS  Google Scholar 

  18. Lehtiö, L., Chi, N.W., and Krauss, S., FEBS J., 2013, vol. 280, pp. 3576–3593.

    Google Scholar 

  19. Gelmini, S., Poggesi, M., Distante, V., Bianchi, S., Simi, L., Luconi, M., Casini Raggi, C., Cataliotti, L., Pazzaglia, M., and Orlando, C., Cancer Lett., 2004, vol. 21, pp. 681–687.

    Google Scholar 

  20. Shebzukhov, Y. V., Lavrik, I. N., Karbach, J. S., Khlgatian, V., Koroleva, E., Belousov, P. V., Kashkin, K. N., Knuth, A., Jager, E., Chi, N.W., Kuprash, D.V., and Nedospasov, S.A., Cancer Immunol. Immunother., 2008, vol. 57, pp. 871–881.

    CAS  PubMed  Google Scholar 

  21. Campbell, L. J., Fidler, C., Eagleton, H., Peniket, A., Kusec, R., Gal1, S., Littlewood, T.J., and Wainscoat, J.S., J. Boultwood.Leukemia, 2006, vol. 20, pp. 671–679.

    CAS  PubMed  Google Scholar 

  22. Shervington, A., Patel, R., Lu, C., Cruickshanks, N., Lea, R., Roberts, G., Dawson, T., and Shervington, L., Brain Res., 2007, vol. 1134, pp. 45–52.

    CAS  PubMed  Google Scholar 

  23. Gao, J., Zhang, J., Long, Y., Tian, Y., and Lu, X., Br. J. Cancer, 2006, vol. 94, pp. 341–345.

    Google Scholar 

  24. Gelmini, S., Quattrone, S., Malentacchi, F., Villari, D., Travaglini, F., Giannarini, G., Della Melina, A., Pazzagli, M., Nicita, G., Selli, C., and Orlando, C., Clin. Chem. Lab. Med., 2007, vol. 45, pp. 862–866.

    CAS  PubMed  Google Scholar 

  25. Curtin, N.J. and Szabo, C., Mol. Aspects. Med., 2013, vol. 34, pp. 1217–1256.

    CAS  PubMed  Google Scholar 

  26. Maki, T. and Takeda, K., Benzoic acid and derivatives, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, 2002.

  27. Abspack, Oxford Diffraction Ltd., Oxford, UK, 2009.

  28. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Montgomery, J., Vreven, T., and Kudin, K., J. Burant, Inc., 2003.

  29. Chen, Y.F., Chen, Y.J., and Yang, J. M., GEMDOCK: An Integrated Environment for Computer-Aided Drug Design and Its Applications, 2007.

  30. The PyMOL Molecular Graphics System, Version 1.8, Schrödinger, LLC.

  31. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Comput Chem., 2004, vol. 25, p. 1605.

    CAS  PubMed  Google Scholar 

  32. Castro, A.S., Sánchez, M.V, Cortés-García, C.J., and García, L.C., Molecular Docking in Halogen Bonding, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa S. El Sayed.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflict of interests.

Additional information

Corresponding author: e-mail: doaasaied75@yahoo.com.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doaa S. El Sayed, Sabine Foro X-Ray Structure, DFT Study of p-Chlorobenzoic Acid, and the Effect of In Silico Molecular Docking on Tankyrase I Enzyme. Russ J Bioorg Chem 46, 542–550 (2020). https://doi.org/10.1134/S1068162020040184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020040184

Keywords:

  • p-chlorobenzoic acid
  • crystallography
  • infra-red
  • DFT method
  • in-silico molecular docking