Skip to main content

Development of the Bispecific Antibody in Fab-scFv Format Based on an Antibody to Human Interferon Beta-1 and Antibody to HER2 Receptor

Abstract

The development of new therapies for malignant tumors is an urgent task. Currently, the humanized antibody trastuzumab is considered the “gold standard” in the complex treatment of breast tumors with overexpression of HER2, human epidermal growth factor receptor 2. However, in some cases, resistance to the specified preparation is observed. The search for new therapies for HER2-associated tumors seems to be an important area of research. A number of clinical studies are currently underway on the use of human interferon-beta (IFN-beta) in oncology. Most of these studies use viral vectors carrying the interferon-beta gene to reduce the systemic effect of this cytokine. The immunocytokine complex of the bispecific antibody and IFN-beta we developed can also avoid the systemic action of IFN-beta. Part of the development of such a complex is the creation of bispecific antibodies of various formats. Based on the neutralizing B16 antibody to IFN-beta and the trastuzumab (Tz) antibody specific for the HER2 receptor, we obtained various variants of bispecific antibodies in Fab-scFv format. It was shown that the proteins obtained bind and neutralize IFN-beta, and they also bind the HER2 receptor in tumor cell lysates and as a recombinant extracellular domain. Such molecules in the immunocytokine complex can be used as delivery vehicles of IFN-beta to HER2-positive tumor cells.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Sharkey, R.M. and Goldenberg, D.M., CA Cancer J. Clin., 2006, vol. 56, pp. 226–243.

    PubMed  Article  Google Scholar 

  2. Schoonooghe, S., Kaigorodov, V., Zawisza, M., Dumolyn, C., Haustraete, J., Grooten, J., and Mertens, N., BMC Biotechnol., 2009, vol. 9, p. 70.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Nahta, R. and Esteva, F., Oncogene, 2007, vol. 26, pp. 3637–3643.

    CAS  PubMed  Article  Google Scholar 

  4. www.roche.ru/ru/produkty/katalog/gerceptin.html.

  5. www.rlsnet.ru/mnn_index_id_2711.htm.

  6. Dicitore, A., Grassi, E.S., Borghi, M.O., Gelmini, G., Cantone, M.C., Gaudenzi, G., Persani, L., Caraglia, M., and Vitale, G., J. Endocrinol. Invest., 2017, vol. 40, pp. 761–770.

    CAS  PubMed  Article  Google Scholar 

  7. van Koetsveld, P.M., Vitale, G., de Herder, W.W., Feelders, R.A., van der Wansem, K., Waaijers, M., van Eijck, C.H., Speel, E.J., Croze, E., van der Lely, A.J., Lamberts, S.W., and Hofland, L.J., J. Clin. Endocrinol. Metab., 2006, vol. 91, pp. 4537–4543.

    CAS  PubMed  Article  Google Scholar 

  8. Vitale, G., de Herder, W.W., van Koetsveld, P.M., Waaijers, M., Schoordijk, W., Croze, E., Colao, A., Lamberts, S.W., and Hofland, L.J., Cancer Res., 2006, vol. 66, pp. 554–562.

    CAS  PubMed  Article  Google Scholar 

  9. Vitale, G., van Eijck, C.H., van Koetsveld, IngP.M., Erdmann, J.I., Speel, E.J., van der Wansem, IngK., Mooij, D.M., Colao, A., Lombardi, G., Croze, E., Lamberts, S.W., and Hofland, L.J., Ann. Surg., 2007, vol. 246, pp. 259–268.

    PubMed  PubMed Central  Article  Google Scholar 

  10. Borden, E.C., Nat. Rev. Drug Discov., 2019, vol. 18, pp. 219–234.

    CAS  PubMed  Article  Google Scholar 

  11. Registry of Drugs of Russia. www.rlsnet.ru/tn_index_id_87759.htm.

  12. Aliev, T.K., Dolgikh, D.A., Kirpichnikov, M.P., Panina, A.A., Rybchenko, V.S., Sveshnikov, P.G., Solopova, O.N., Toporova, V.A., and Shemchukova, O.B., Patent Application no. 2 018 147 193, December 28, 2018.

  13. Brinkmann, U. and Kontermann, R.E., MAbs, 2017, vol. 9, pp. 182–212.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    CAS  Article  PubMed  Google Scholar 

  15. Mosmann, T., J. Immunol. Methods, 1983, vol. 65, pp. 55–63.

    CAS  PubMed  Article  Google Scholar 

  16. https://tools.thermofisher.com/content/sfs/manuals/ lipofectamine3000_protocol.pdf.

  17. Panda, S.K. and Ravindran, B., Bio-Protocol, 2013, vol. 3, no. 3, p. 323.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement on subsidies No. 075-15-2019-1385 of 06/19/2019, unique project identifier RFMEFI60417X0189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Panina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans and animals as research objects.

Conflict of Interests

The authors declare they have no conflict of interests.

Additional information

Abbreviations: L, light chain of the antibody; H, heavy chain of the antibody; VH, variable domain of the H chain; VL, variable domain of the L chain; Ch1, first constant domain of an IgG1 antibody; Fab fragment, antigen-binding fragment of antibody; scFv, single chain antibody variants; HER2, human epidermal growth factor receptor 2; IFN-beta, human interferon-beta-1; MTT, 3-bromide(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium; Tz, trastuzumab; PCR, polymerase chain reaction; SOE-PCR, polymerase chain reaction with short overlapping ends; PBMC, peripheral blood mononuclear cell.

Corresponding author: phone: +7 (916) 292-76-51; e-mail: paniann07@yandex.ru.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panina, A.A., Toporova, V.A., Rybchenko, V.S. et al. Development of the Bispecific Antibody in Fab-scFv Format Based on an Antibody to Human Interferon Beta-1 and Antibody to HER2 Receptor. Russ J Bioorg Chem 46, 572–581 (2020). https://doi.org/10.1134/S1068162020040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020040159

Keywords:

  • IFN-beta
  • CHO
  • trastuzumab
  • Fab-scFv
  • HER2