Skip to main content

Experimental Methods to Study the Mechanisms of Interaction of Lipid Membranes with Low-Molecular-Weight Drugs

Abstract

The review is devoted to methods for studying how lipid membranes interact with low-molecular-weight drugs. The following methods are considered in the review: IR and EPR spectroscopy, fluorescence analysis, differential scanning calorimetry, and microscopy methods. Methods for characterizing the size and charge of vesicles are also considered: dynamic light scattering and nanoparticle tracking analysis. Methods are divided into those requiring additional labels and label-free. An important objective of the review is to find the optimal research strategy by selecting informative, modern approaches to studying the interactions of drugs with lipid membranes, as well as analyze the latest achievements of instrumental methods.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Manaia, E.B., et al., Int. J. Nanomed., 2017, vol. 12, pp. 4991–5011.

    CAS  Article  Google Scholar 

  2. Kinuta, M. and Takei, K., Cell Struct. Funct., 2002, vol. 27, no. 2, pp. 63–69.

    CAS  PubMed  Article  Google Scholar 

  3. Kulikov, K.G. and Koshlan, T.V., Zh. Tekh. Fiz., 2015, vol. 85, no. 12, pp. 26–32.

    Google Scholar 

  4. Yaroslavov, A.A., et al., Colloid J., 2011, vol. 73, no. 3, pp. 430–435.

    CAS  Article  Google Scholar 

  5. Sanchez-Purra, M., et al., Int. J. Pharm., 2016, vol. 511, no. 2, pp. 946–956.

    CAS  PubMed  Article  Google Scholar 

  6. Kinuta, M., et al., Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 5, pp. 2842–2847.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Deygen, I.M. and Kudryashova, E.V., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 5, pp. 547–557.

    CAS  Article  Google Scholar 

  8. Eremenko, A.V., et al., Electroanalysis, 2012, vol. 24, no. 3, pp. 573–580.

    CAS  Article  Google Scholar 

  9. Deygen, I.M. and Kudryashova, E.V., Colloids Surf., 2016, vol. 141, pp. 36–43.

    CAS  Article  Google Scholar 

  10. Filipe, V., Hawe, A., and Jiskoot, W., Pharm. Res, 2010, vol. 27, no. 5, pp. 796–810.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Le-Deygen, I.M., et al., Nanomed. Nanotechnol., Biol. Med. Elsevier Inc., 2019, vol. 21, p. 102 065.

    Google Scholar 

  12. Shin, M., et al., Mol. Pharm., 2018, vol. 15, no. 3, pp. 721–728.

    CAS  PubMed  Article  Google Scholar 

  13. González-Rodríguez, M.L. and Rabasco, A.M., Expert Opin. Drug Deliv., 2011, vol. 8, no. 7, pp. 857–871.

    PubMed  Article  CAS  Google Scholar 

  14. Yaroslavov, A.A., et al., Adv. Colloid Interface Sci., 2008, vol. 142, nos. 1–2, pp. 43–52.

    CAS  PubMed  Article  Google Scholar 

  15. Smith, M.C., et al., Anal. Bioanal. Chem., 2017, vol. 409, no. 24, pp. 5779–5787.

    CAS  PubMed  Article  Google Scholar 

  16. Kim, M.W., Niidome, T., and Lee, R., Mar. Drugs, 2019, vol. 17, no. 10, pp. 581–593.

    CAS  PubMed Central  Article  Google Scholar 

  17. Singh, S., Int. J. Nanomed., 2018, vol. 13, pp. 11–13.

    CAS  Article  Google Scholar 

  18. Le-Deygen, I.M., et al., Chem. Phys. Lipids, 2020, vol. 228, p. 104 891.

    Article  CAS  Google Scholar 

  19. Rouf, M.A., et al., J. Liposome Res., 2009, vol. 19, no. 4, pp. 322–331.

    CAS  PubMed  Article  Google Scholar 

  20. Robson, R.J. and Dennis, E.A., J. Phys. Chem., 1977, vol. 81, no. 11, pp. 1075–1078.

    CAS  Article  Google Scholar 

  21. Biltonen, R.L. and Lichrenberg, D., Chem. Phys. Lipids, 1993, vol. 64, pp. 129–142.

    CAS  Article  Google Scholar 

  22. Bilge, D., et al., Spectrochim. Acta, A. Mol. Biomol. Spectrosc., Elsevier B.V., 2014, vol. 130, pp. 250–256 .

    CAS  Google Scholar 

  23. Di Foggia, M., et al., J. Therm. Anal. Calorim., 2017, vol. 127, no. 2, pp. 1407–1417.

    CAS  Article  Google Scholar 

  24. Wei, X., et al., Mol. Pharm., 2017, vol. 14, no. 12, pp. 4339–4345.

    CAS  PubMed  Article  Google Scholar 

  25. Li, T., et al., J. Control. Release, 2018, vol. 288, pp. 96–110.

    CAS  PubMed  Article  Google Scholar 

  26. Mady, M.M., et al., Cell Biochem. Biophys., 2012, vol. 62, no. 3, pp. 481–486.

    CAS  PubMed  Article  Google Scholar 

  27. Perinelli, D.R., et al., Int. J. Pharm. Elsevier, 2017, vol. 534, nos. 1–2, pp. 81–88.

    CAS  Article  Google Scholar 

  28. Pereira-Leite, C., et al., J. Phys. Chem. B, 2012, vol. 116, no. 46, pp. 13 608–13 617.

    Article  CAS  Google Scholar 

  29. Cipolla, D., et al., Pharm. Res., 2016, vol. 33, no. 11, pp. 2748–2762.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Cipolla, D., et al., RSC Adv., 2016, vol. 6, no. 8, pp. 6223–6233.

    CAS  Article  Google Scholar 

  31. Feng, L., et al., Biomaterials, 2018, vol. 181, pp. 81–91.

    CAS  PubMed  Article  Google Scholar 

  32. Kleinschmidt, J.H., Lipid–Protein Interactions : Methods and Protocols, New York: Humana Press, 2013.

    Book  Google Scholar 

  33. Toyran, N. and Severcan, F., J. Mol. Struct., 2007, vol. 839, nos. 1–3, pp. 19–27.

    CAS  Article  Google Scholar 

  34. Deygen, I.M., et al., Langmuir, 2016, vol. 32, no. 42, pp. 10 861–10 869.

    Article  CAS  Google Scholar 

  35. Manrique-Moreno, M., et al., Biochim. Biophys. Acta, 2009, vol. 1788, no. 6, pp. 1296–1303.

    PubMed  Article  CAS  Google Scholar 

  36. Lewis, R.N., et al., Biophys. J., 1994, vol. 67, no. 6, pp. 2367–2375.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Manrique-Moreno, M., et al., Lett. Drug Des. Discov., 2009, vol. 7, no. 1, pp. 50–56.

    Article  Google Scholar 

  38. Kuć, M., et al., Chem. Phys., 2015, vol. 458, pp. 9–17.

    Article  CAS  Google Scholar 

  39. Baird, C.L., Courtenay, E.S., and Myszka, D.G., Anal. Biochem., 2002, vol. 310, no. 1, pp. 93–99.

    CAS  PubMed  Article  Google Scholar 

  40. Ruozi, B., et al., Int. J. Nanomed., 2011, vol. 6, pp. 557–563.

    CAS  Article  Google Scholar 

  41. Robson, A.L., et al., Front. Pharmacol., 2018, vol. 9, pp. 1–8.

    CAS  Article  Google Scholar 

  42. Ruozi, B., et al., Eur. J. Pharm. Sci., 2005, vol. 25, no. 1, pp. 81–89.

    CAS  PubMed  Article  Google Scholar 

  43. Takahashi, N., et al., J. Pharm. Sci. Am. Pharm. Assoc., 2018, vol. 107, no. 2, pp. 717–726.

    CAS  Article  Google Scholar 

  44. Johnston, M.J.W., et al., J. Liposome Res., 2008, vol. 18, no. 2, pp. 145–157.

    CAS  PubMed  Article  Google Scholar 

  45. Zhigaltsev, I.V., et al., J. Control. Release, 2005, vol. 104, no. 1, pp. 103–111.

    CAS  PubMed  Article  Google Scholar 

  46. Shamrakov, D., et al., Int. J. Pharm., 2018, vol. 547, nos. 1–2, pp. 648–655.

    PubMed  Article  CAS  Google Scholar 

  47. Chang, W.-H., et al., Nanoscale, 2018, vol. 10, no. 6, pp. 2820–2824.

    PubMed  Article  Google Scholar 

  48. Alves, A.C., et al., Sci. Rep., 2017, vol. 7, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  49. Lianos, P., Mukhopadhyay, A.K., and Georghiou, S., Photochem. Photobiol., 1980, vol. 32, no. 3, pp. 415–419.

    CAS  Article  Google Scholar 

  50. Macdonald, A.G., et al., Biochim. Biophys. Acta, 1988, vol. 938, pp. 231–242.

    CAS  PubMed  Article  Google Scholar 

  51. Beregovaya, E.G., et al., Biopolimery Kletka, 1993, vol. 9, no. 5, pp. 19–26.

    Google Scholar 

  52. Boldyrev, I., et al., New BODIPY lipid probes for fluorescence studies of membranes, J. Lipid Res., 2007, vol. 48, no. 7, pp. 1518–1532.

    CAS  PubMed  Article  Google Scholar 

  53. Kudryashova, E.V., Funktsionirovanie i struktura belkov na poverkhnostyakh razdela faz. Novye metody issledovaniya (The Functioning and Structure of Proteins on Phase Interfaces: New Research Methods), Palmarium Academic Publishing AV Akademikerverlag GmbH and Co., 2013.

  54. Paul, B.K., Ghosh, N., and Mukherjee, S., Colloids Surf., 2018, vol. 170, pp. 36–44.

    CAS  Article  Google Scholar 

  55. Mittag, J.J., et al., Eur. J. Pharm. Biopharm., 2017, vol. 119, pp. 215–223.

    CAS  PubMed  Article  Google Scholar 

  56. Cundall, R.B. and Dale, R.E., Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Cundall, R.B. and Dale, R.E., Eds., New York: Plenum Press, 1983, pp. 555–605.

    Book  Google Scholar 

  57. Krishnamoorthy, G., J. Biosci., Springer India, 2018, vol. 43, no. 3, pp. 555–567.

    CAS  Google Scholar 

  58. Kudryashova, E.V., Gladilin, A.K., and Levashov, A.V., Usp. Biol. Khim., 2002, vol. 42, pp. 257–294.

    CAS  Google Scholar 

  59. Poojari, C., et al., Chem. Phys. Lipids, 2019, vol. 223, p. 104 784.

    Article  CAS  Google Scholar 

  60. Van Slooten, M.L., et al., J. Pharm. Sci., 2000, vol. 89, no. 12, pp. 1605–1619.

    CAS  PubMed  Article  Google Scholar 

  61. Borst, J.W., et al., Biochim. Biophys. ActaMol. Cell Biol. Lipids, 2000, vol. 1487, no. 1, pp. 61–73.

    CAS  Article  Google Scholar 

  62. Ivanov, L.V. and Kartel’, N.T., Rep. Natl. Acad. Sci. Ukr., 2012, vol. 5, pp. 139–145.

    Google Scholar 

  63. Zhao, L., et al., Int. J. Pharm., 2007, vol. 338, nos. 1–2, pp. 258–266.

    CAS  PubMed  Article  Google Scholar 

  64. Dicko, A., et al., Int. J. Pharm., 2010, vol. 391, nos. 1–2, pp. 248–259.

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-33-00134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Le-Deygen.

Ethics declarations

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interests.

Additional information

Translated by N. Onishchenko

Abbreviations: 16-DSA, 16-doxylstearic acid; 5-DSA, 5-doxylsteraic acid; AFM, atomic force microscopy; DPPC, dipalmitoylphosphatidylcholine; DSC, differential scanning calorimetry; DLS, dynamic light scattering; CL, cardiolipin; MR, mass ratio; SAXS, small angle X-ray scattering; ATIR, attenuated total internal reflection; NTA, nanoparticle tracking analysis; TRFA, time-resolved fluorescence anisotropy; HFI, hyperfine interaction; HFS, hyperfine splitting; SEM, scanning electron microscopy; FCS, fluorescence correlation spectroscopy; LE, loading efficiency; ESEM, environmental scanning electron microscopy.

Corresponding authors: e-mail: i.m.deygen@gmail.com.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le-Deygen, I.M., Skuredina, A.A. & Kudryashova, E.V. Experimental Methods to Study the Mechanisms of Interaction of Lipid Membranes with Low-Molecular-Weight Drugs. Russ J Bioorg Chem 46, 480–497 (2020). https://doi.org/10.1134/S1068162020040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020040123

Keywords:

  • liposomes
  • IR spectroscopy
  • EPR spectroscopy
  • fluorescence methods
  • differential scanning calorimetry