Skip to main content

A Simultaneous Use of Cy5-Modified Derivatives of Deoxyuridine and Deoxycytidine in PCR


Particular features of the simultaneous incorporation into the growing DNA chain of modified Cy5-deoxyuridines (Cy5-dU) and deoxycytidines (Cy5-dC) and Taq DNA polymerase in the process of PCR amplification were studied. The studies were carried out for the pairwise incorporation of nucleotides modified with fluorophores charged positively, negatively, or neutral. A portion of each of the modified dNTP (Cy5-dUTP and Cy5-dCTP) in respect to natural analogs (dTTP and dCTP) was varied from 0 to 100%, i.e., until the complete substitution. The results were compared with the individual incorporation of the corresponding modified derivatives. The (Cy5-dU + Cy5-dC) pairs were used to amplify of the bacterial genome fragments of 126, 283, and 370 bp in length. Under the amplification conditions with Cy5-modified nucleotides the yield of the product decreased with an increase in the length of the amplified DNA fragment. Electronegative Cy5-dNTPs showed the lowest inhibitory effect on the PCR procedure, whereas electroneutral nucleotides provided a greater density of label incorporation into the growing DNA chain.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. Hollenstein, M., Molecules, 2012, vol. 17, pp. 13 569–13 591.

    Google Scholar 

  2. Pinheiro, V.B. and Holliger, P., Trends Biotechnol., 2014, vol. 32, pp. 321–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lapa, S.A., Chudinov, A.V., and Timofeev, E.N., Mol. Biotechnol., 2016, vol. 58, pp. 79–92.

    CAS  PubMed  Google Scholar 

  4. Sandin, P., Stengel, G., Ljungdahl, T., Borjesson, K., Macao, B., and Wilhelmsson, L.M., Nucleic Acids Res., 2009, vol. 37, pp. 3924–3933.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kielkowski, P., Cahova, H., Pohl, R., and Hocek, M., Bioorg. Med. Chem., 2016, vol. 24, pp. 1268–1276.

    CAS  PubMed  Google Scholar 

  6. Matyašovský, J., Perlíková, P., Malnuit, V., Pohl, R., and Hocek, M., Angew Chem. Int. Ed. Engl., 2016, vol. 55, pp. 15 856–15 859.

    Google Scholar 

  7. Brázdilová, P., Vrábel, M., Pohl, R., Pivonková, H., Havran, L., Hocek, M., and Fojta, M., Chemistry, 2007, vol. 13, pp. 9527–9533.

    PubMed  Google Scholar 

  8. Yan, J., Yuan, Y., Mu, R., Shang, H., and Guan, Y., J. Biosci., 2014, vol. 39, pp. 795–804.

    CAS  PubMed  Google Scholar 

  9. Diafa, S. and Hollenstein, M., Molecules, 2015, vol. 14, pp. 16 643–16 671.

    Google Scholar 

  10. Gawande, B.N., Rohloff, J.C., Carter, J.D., von Carlowitz, I., Zhang, C., Schneider, D.J., and Janjic, N., Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. 2898–2903.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuwahara, M., Hososhima, S., Takahata, Y., Kitagata, R., Shoji, A., Hanawa, K., Ozaki, A.N., Ozaki, H., and Sawai, H., Nucleic Acids Res. Suppl., 2003, vol. 3, pp. 37–38.

    CAS  Google Scholar 

  12. Shershov, V.E., Lapa, S.A., Kuznetsova, V.E., Spitsyn, M.A., Guseinov, T.O., Polyakov, S.A., Stomahin, A.A., Zasedatelev, A.S., and Chudinov, A.V., J. Fluoresc., 2017, vol. 27, pp. 2001–2016.

    CAS  PubMed  Google Scholar 

  13. Zasedateleva, O.A., Vasiliskov, V.A., Surzhikov, S.A., Kuznetsova, V.E., Shershov, V.E., Guseinov, T.O., Smirnov, I.P., Yurasov, R.A., Spitsyn, M.A., and Chudinov, A.V., Nucleic Acids Res., 2018, vol. 46, e73.

    PubMed  PubMed Central  Google Scholar 

  14. Giller, G., Tassara, T., Angerer, B., Muhlegger, K., Amacker, M., and Winter, H., Nucleic Acids Res., 2003, vol. 31, pp. 2630–2635.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuwahara, M., Nagashima, J., Hasegawa, M., Tamura, T., Kitagata, R., HanaWa, K., Hasoshima, S., Kasamatsu, T., Ozaki, H., and Sawai, H., Nucleic Acids Res., 2006, vol. 34, pp. 5383–5394.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lapa, S.A., Volkova, O.S., Spitsyn, M.A., Shershov, V.E., Kuznetsova, V.E., Guseinov, T.O., Zasedatelev, A.S., and Chudinov, A.V., Russ. J. Bioorg. Chem., 2019, vol. 45, pp. 392–402.

  17. Guseinov, T.O., Kuznetsova, V.E., Shershov, V.E., Spitsyn, M.A., Lapa, S.A., Zasedatelev, A.S., and Chudinov, A.V., Russ. J. Bioorg. Chem., 2018, vol. 44, pp. 184–187.

    Google Scholar 

  18. Mikhailovich, V., Lapa, S., Gryadunov, D., Sobolev, A., Strizhkov, B., Chernyh, N., Skotnikova, O., Irtuganova, O., Moroz, A., Litvinov, V., Vladimirskii, M., Perelman, M., Chernousova, L., Erokhin, V., Zasedatelev, A., and Mirzabekov, A., J. Clin. Microbiol., 2001, vol. 39, pp. 2531–2540.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The work was supported by the Russian Foundation for Basic Research, project no. 19-04-01217.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. A. Lapa.

Ethics declarations


In this work, humans or animals were not involved as subjects of studies.

Conflict of Interests

The authors notified about the absence of conflict of interest.

Additional information

Translated by E. Shirokova

Abbreviations: Cy5-dUTP, fluorescent 2'-deoxyuridine 5'-triphosphate; Cy5-dCTP, fluorescent 2'-deocycytidine 5'-triphosphate.

Corresponding author: phone: +7 (499) 135-9800; fax: +7 (495) 135-1405; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lapa, S.A., Guseinov, T.O., Pavlov, A.S. et al. A Simultaneous Use of Cy5-Modified Derivatives of Deoxyuridine and Deoxycytidine in PCR. Russ J Bioorg Chem 46, 557–562 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • indodicarbocyanine dyes
  • modified deoxynucleoside triphosphates
  • PCR