Skip to main content

Antimicrobial Peptide Engineering: Rational Design, Synthesis, and Synergistic Effect

Abstract

The swift killing kinetics is an attractive characteristics of wide-spectrum antimicrobial activity of peptides, which made them generate great attention as possible antitoxin pharmaceutics for commercial development. Regrettably, and regardless of the significant capability of these composites and the expanded research attempts that were performed to move these compounds to the health care units, the outcome has been finite. Primarily, this is attributed to hurdles associated with the peptides’ low targeting to pathogens and selectivity, exuberant toxicity to human cells, proneness to protease attack, pathogen resistance, and cost of production, poor chemical and physical stability of the peptides, reduced activity based on pH and salt sensitivity, pharmacodynamics and pharmacokinetic issues among others. Protein engineering via rational design and computer-based techniques, such as molecular docking and molecular dynamics simulations, for instance, through amino acid modifications and chemical synthesis, and synergistic effects, has proven to be useful for improving the therapeutic index and antibacterial activity of these artificially made peptides. In this review, we tried to search from the literature and previous scientific findings and researches, to highlight the contribution of modern-day peptide engineering and experimental techniques. In particular, we analyzed rational design, peptide engineering, peptide synthesis, recombinant peptide production, and synergistic effects; and how these methods modulate the peptide and protein functions. It also provides a comprehensive and straightforward overview of several studies towards addressing the issue of some of the limitations affecting these essential compounds that could be efficiently adopted and applied in future investigations.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. Sørensen, O.E., Borregaard, N., and Cole, A.M., TrendsInnate Immun., 2008, vol. 15, pp. 61–77.

    Google Scholar 

  2. Fjell, C.D., Hiss, J.A., Hancock, R.E.W., and Schneider, G., Nat. Rev. Drug Discov., 2012, vol. 11, pp. 37–51.

    CAS  Google Scholar 

  3. Reddy, K.V.R., Yedery, R.D., and Aranha, C., Int. J. Antimicrob. Agents, 2004, vol. 24, pp. 536–547.

    CAS  PubMed  Google Scholar 

  4. Pavlova, O.A. and Severinov, K.V., Russ. J. Genet., 2006, vol. 42, pp. 1380–1389.

    CAS  Google Scholar 

  5. Sang, Y. and Blecha, F., Anim. Heal. Res. Rev., 2008, vol. 9, pp. 227–235.

    Google Scholar 

  6. Martínez, B., Rodríguez, A., and Suárez, E., New Weapons to Control Bacterial Growth, 2016, pp. 15–38.

  7. Smith, L. and Hillman, J.D., Curr. Opin. Microbiol., 2008, vol. 11, pp. 401–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hassan, M., Kjos, M., Nes, I.F., Diep, D.B., and Lotfipour, F., J. Appl. Microbiol., 2012, vol. 113, pp. 723–736.

    CAS  PubMed  Google Scholar 

  9. Cotter, P.D., Ross, R.P., and Hill, C., Nat. Rev. Microbiol., 2013, vol. 11, no. 2, p. 95–105.

    CAS  PubMed  Google Scholar 

  10. Perez, R.H., Zendo, T., and Sonomoto, K., Microb. Cell Fact., 2014, vol. 13, p. S3.

    PubMed  PubMed Central  Google Scholar 

  11. Yuan, J., Zhang, Z.-Z., Chen, X.-Z., Yang, W., and Huan, L.-D., Appl. Microbiol. Biotechnol., 2004, vol. 64, pp. 806–815.

    CAS  PubMed  Google Scholar 

  12. Field, D., Begley, M., O’Connor, P.M., Daly, K.M., Hugenholtz, F., Cotter, P.D., Hill, C., and Ross, R.P., PLoS One, 2012, vol. 7, p. e46 884.

    Google Scholar 

  13. Mcclintock, M.K., Kaznessis, Y.N., and Hackel, B.J., Biotechnol. Bioeng., 2016, vol. 113, pp. 414–423.

    CAS  PubMed  Google Scholar 

  14. Zhu, S., Mol. Immunol., 2008, vol. 45, pp. 828–838.

    CAS  PubMed  Google Scholar 

  15. Riley, M.A. and Wertz, J.E., Biochimie, 2002, vol. 84, pp. 357–364.

    CAS  PubMed  Google Scholar 

  16. Mygind, P.H., Fischer, R.L., Schnorr, K.M., Hansen, M.T., Sönksen, C.P., Ludvigsen, S., Raventós, D., Buskov, S., Christensen, B., De Maria, L., Taboureau, O., Yaver, D., Elvig-Jørgensen, S.G., Sørensen, M.V., Christensen, B.E., Kjærulff, S., Frimodt-Moller, N., Lehrer, R.I., Zasloff, M., and Kristensen, H.-H., Nature, 2005, vol. 437, pp. 975–980.

    CAS  PubMed  Google Scholar 

  17. Brinch, K.S., Sandberg, A., Baudoux, P., Van Bambeke, F., Tulkens, P.M., Frimodt-Møller, N., Høiby, N., and Kristensen, H.-H., Antimicrob. Agents Chemother., 2009, vol. 53, pp. 4801–4808.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Andes, D., Craig, W., Nielsen, L.A., and Kristensen, H.H., Antimicrob. Agents Chemother., 2009, vol. 53, pp. 3003–3009.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Welker, M. and Von Döhren, H., FEMS Microbiol. Rev., 2006, vol. 30, pp. 530–563.

    CAS  PubMed  Google Scholar 

  20. Sivonen, K. and Börner, T., Cyanobacteria Mol.Biol. Genomics Evol., 2008, pp. 159–197.

    Google Scholar 

  21. Schmidt, E.W. and Donia, M.S., Methods Enzymol., 2009, vol. 458, pp. 575–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Leikoski, N., Fewer, D.P., Jokela, J., Wahlsten, M., Rouhiainen, L., and Sivonen, K., Appl. Environ. Microbiol., 2010, vol. 76, pp. 701–709.

    CAS  PubMed  Google Scholar 

  23. Bokesch, H.R., O’Keefe, B.R., McKee, T.C., Pannell, L.K., Patterson, G.M.L., Gardella, R.S., Sowder, R.C., Turpin, J., Watson, K., Buckheit, R.W., Jr., and Boyd, M.R., Biochemistry, 2003, vol. 42, pp. 2578–2584.

    CAS  PubMed  Google Scholar 

  24. Salvatella, X., Caba, J.M., Albericio, F., and Giralt, E., J. Org. Chem., 2003, vol. 68, pp. 211–215.

    CAS  PubMed  Google Scholar 

  25. Ishida, K., Matsuda, H., Murakami, M., and Yamaguchi, K., J. Nat. Prod., 1997, vol. 60, pp. 724–726.

    CAS  PubMed  Google Scholar 

  26. Ogino, J., Moore, R.E., Patterson, G.M.L., and Smith, C.D., J. Nat. Prod., 1996, vol. 59, pp. 581–586.

    CAS  PubMed  Google Scholar 

  27. Linington, R.G., González, J., Urena, L.-D., Romero, L.I., Ortega-Barría, E., and Gerwick, W.H., J. Nat. Prod., 2007, vol. 70, pp. 397–401.

    CAS  PubMed  Google Scholar 

  28. Philmus, B., Christiansen, G., Yoshida, W.Y., and Hemscheidt, T.K., ChemBioChem, 2008, vol. 9, pp. 3066–3073.

    CAS  PubMed  Google Scholar 

  29. Harris, M., Mora-Montes, H.M., Gow, N.A.R., and Coote, P.J., Microbiology, 2009, vol. 155, pp. 1058–1070.

    CAS  PubMed  Google Scholar 

  30. Wang, G., Pharmaceuticals, 2014, vol. 7, pp. 545–594.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Dean, S.N., Bishop, B.M., and van Hoek, M.L., BMC Microbiol., 2011, vol. 11, p. 114.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Ganz, T., Nat. Rev. Immunol., 2003, vol. 3, p. 710.

    CAS  PubMed  Article  Google Scholar 

  33. Porto, W.F., Nolasco, D.O., Pires, Á.S., Pereira, R.W., Franco, O.L., and Alencar, S.A., Pept. Sci., 2016, vol. 106, pp. 633–644.

    CAS  Article  Google Scholar 

  34. Modi, B.P., Teves, M.E., Pearson, L.N., Parikh, H.I., Haymond-Thornburg, H., Tucker, J.L., Chaemsaithong, P., Gomez-Lopez, N., York, T.P., Romero, R., and Strauss, J.F., Mol. Genet. Genomic Med., 2017, vol. 5, pp. 720–729.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Veldhuizen, E.J.A., Schneider, V.A.F., Agustiandari, H., van Dijk, A., Tjeerdsma-van Bokhoven, J.L.M., Bikker, F.J., and Haagsman, H.P., PLoS One, 2014, vol. 9, e95 939.

    Article  CAS  Google Scholar 

  36. Zasloff, M., Nature, 2002, vol. 415, p. 389.

    CAS  PubMed  Article  Google Scholar 

  37. Teixeira, V., Feio, M.J., and Bastos, M., Prog. Lipid Res., 2012, vol. 51, pp. 149–177.

    CAS  PubMed  Article  Google Scholar 

  38. Wright, G.D., Adv. Drug Deliv. Rev., 2005, vol. 57, pp. 1451–1470.

    CAS  PubMed  Article  Google Scholar 

  39. Chung, P.Y. and Khanum, R., J. Microbiol. Immunol. Infect., 2017, vol. 50, pp. 405–410.

    CAS  PubMed  Article  Google Scholar 

  40. Marr, A.K., Gooderham, W.J., and Hancock, R.E.W., Curr. Opin. Pharmacol., 2006, vol. 6, pp. 468–472.

    CAS  PubMed  Google Scholar 

  41. Lohner, K., Curr. Top. Med. Chem., 2017, vol. 17, pp. 508–519.

    CAS  PubMed  Google Scholar 

  42. Hancock, R.E.W. and Sahl, H.G., Nat. Biotechnol., 2006, vol. 24, pp. 1551–1557.

    CAS  PubMed  Article  Google Scholar 

  43. John, H., Maronde, E., Forssmann, W., Meyer, M., and Adermann, K., Eur. J. Med. Res., 2008, vol. 13, p. 73.

    CAS  PubMed  Google Scholar 

  44. McPhee, J.B., Scott, M.G., and Hancock, R.E.W., Comb. Chem. High Throughput Screen., 2005, vol. 8, pp. 257–272.

    CAS  PubMed  Article  Google Scholar 

  45. Samad, A., Sultana, Y., and Aqil, M., Curr. Drug Deliv., 2007, vol. 4, pp. 297–305.

    CAS  PubMed  Article  Google Scholar 

  46. Won, H.-S., Seo, M.-D., Jung, S.-J., Lee, S.-J., Kang, S.-J., Son, W.-S., Kim, H.-J., Park, T.-K., Park, S.-J., and Lee, B.-J., J. Med. Chem., 2006, vol. 49, no. 16, pp. 4886–4895.

    CAS  PubMed  Article  Google Scholar 

  47. Deslouches, B., Hasek, M.L., Craigo, J.K., Steckbeck, J.D., and Montelaro, R.C., J. Med. Microbiol., 2016, vol. 65, pp. 554–565.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Thamri, A., Létourneau, M., Djoboulian, A., Chatenet, D., Déziel, E., Castonguay, A., and Perreault, J., PLoS One, 2017, vol. 12, pp. 1–12.

    Article  CAS  Google Scholar 

  49. Kim, J.S., Jeong, J.H., and Kim, Y., J. Microbiol. Biotechnol., 2018, vol. 28, pp. 381–390.

    CAS  PubMed  Article  Google Scholar 

  50. Kim, H., Jang, J.H., Kim, S.C., and Cho, J.H., J. Antimicrob. Chemother., 2013, vol. 69, pp. 121–132.

    PubMed  Google Scholar 

  51. Horn, M. and Neundorf, I., Sci. Rep., 2018, vol. 8, pp. 1–12.

    Google Scholar 

  52. Brook, M., Tomlinson, G.H., Miles, K., Smith, R.W.P., Rossi, A.G., Hiemstra, P.S., van’t Wout, E.F.A., Dean, J.L.E., Gray, N.K., Lu, W., and Gray, M., Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, pp. 4350–4355.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J.K., Seo, C.H., Luchian, T., and Park, Y., Antimicrob. Agents Chemother., 2016, vol. 60, pp. 495–506.

    CAS  PubMed  Google Scholar 

  54. Wang, G., Pharmaceuticals, 2013, vol. 6, pp. 728–758.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mohamed, M.F., Brezden, A., Mohammad, H., Chmielewski, J., and Seleem, M.N., Sci. Rep., 2017, vol. 7, pp. 1–13.

    Google Scholar 

  56. Chegini, P.P., Nikokar, I., Hosseinabadi, T., and Tabarzad, M., Trends Pept.Protein Sci., 2017, vol. 1, pp. 135–143.

    CAS  Google Scholar 

  57. Ong, Z.Y., Wiradharma, N., and Yang, Y.Y., Adv. Drug Deliv. Rev., 2014, vol. 78, pp. 28–45.

    CAS  PubMed  Google Scholar 

  58. Fox, M.A., Thwaite, J.E., Ulaeto, D.O., Atkins, T.P., and Atkins, H.S., Peptides, 2012, vol. 33, pp. 197–205.

    CAS  PubMed  Google Scholar 

  59. Liu, Y.F., Xia, X., Xu, L., and Wang, Y.Z., Biomaterials, 2013, vol. 34, pp. 237–250.

    CAS  PubMed  Google Scholar 

  60. Ciornei, C.D., Sigurdardóttir, T., Schmidtchen, A., and Bodelsson, M., Antimicrob. Agents Chemother., 2005, vol. 49, pp. 2845–2850.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nan, Y.H., Bang, J.K., Jacob, B., Park, I.S., and Shin, S.Y., Peptides, 2012, vol. 35, pp. 239–247.

    CAS  PubMed  Google Scholar 

  62. Ong, Z.Y., Gao, S.J., and Yang, Y.Y., Adv. Funct. Mater., 2013, vol. 23, pp. 3682–3692.

    CAS  Google Scholar 

  63. Wiradharma, N., Khoe, U., Hauser, C.A.E., Seow, S.V., Zhang, S., and Yang, Y.Y., Biomaterials, 2011, vol. 32, pp. 2204–2212.

    CAS  PubMed  Google Scholar 

  64. Liu, Z., Brady, A., Young, A., Rasimick, B., Chen, K., Zhou, C., and Kallenbach, N.R., Antimicrob. Agents Chemother., 2007, vol. 51, pp. 597–603.

    CAS  PubMed  Google Scholar 

  65. Deslouches, B., Steckbeck, J.D., Craigo, J.K., Doi, Y., Mietzner, T.A., and Montelaro, R.C., Antimicrob. Agents Chemother., 2013, vol. 57, pp. 2511–2521.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chan, D.I., Prenner, E.J., and Vogel, H.J., Biochim.Biophys. Acta—Biomembr., 2006, vol. 1758, pp. 1184–1202.

    Google Scholar 

  67. Strøm, M.B., Haug, B.E., Skar, M.L., Stensen, W., Stiberg, T., and Svendsen, J.S., J. Med. Chem., 2003, vol. 46, pp. 1567–1570.

    PubMed  Google Scholar 

  68. Torcato, I.M., Huang, Y.H., Franquelim, H.G., Gaspar, D., Craik, D.J., Castanho, M.A., and Troeira Henriques, S., Biochim.Biophys. Acta—Biomembr., 2013, vol. 1828, pp. 944–955.

    Google Scholar 

  69. Chen, H.-L., Su, P.-Y., and Shih, C., Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 9125–9132.

    CAS  PubMed  Google Scholar 

  70. Nguyen, L.T., Chau, J.K., Perry, N.A., de Boer, L., Zaat, S.A.J., and Vogel, H.J., PLoS One, 2010, vol. 5, pp. 1–8.

    Google Scholar 

  71. Molhoek, E.M., Van Dijk, A., Veldhuizen, E.J.A., Haagsman, H.P., and Bikker, F.J., Peptides, 2011, vol. 32, pp. 875–880.

    CAS  PubMed  Google Scholar 

  72. Chan, L.Y., Zhang, V.M., Huang, Y.-H., Waters, N.C., Bansal, P.S., Craik, D.J., and Dal, N.L., ChemBioChem, 2013, vol. 14, pp. 617–624.

    CAS  PubMed  Google Scholar 

  73. Unger, T., Oren, Z., and Shai, Y., Biochemistry, 2001, vol. 40, pp. 6388–6397.

    CAS  PubMed  Google Scholar 

  74. Muhammad, T., Gunasekera, S., Strömstedt, A.A., and Göransson, U., Planta Med., 2016, vol. 82, p. P736.

    Google Scholar 

  75. Almaaytah, A., Mohammed, G.K., Abualhaijaa, A., and Al-Balas, Q., Drug Des. Devel. Ther., 2017, vol. 11, p. 3159.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rozek, A., Powers, J.P.S., Friedrich, C.L., and Hancock, R.E.W., Biochemistry, 2003, vol. 42, pp. 14 130–14 138.

    Google Scholar 

  77. Jiang, Z., Vasil, A.I., Hale, J.D., Hancock, R.E.W., Vasil, M.L., and Hodges, R.S., Pept. Sci., 2008, vol. 90, pp. 369–383.

    CAS  Google Scholar 

  78. Khara, J.S., Lim, F.K., Wang, Y., Ke, X.Y., Voo, Z.X., Yang, Y.Y., Lakshminarayanan, R., and Ee, P.L.R., Acta Biomater., 2015, vol. 28, pp. 99–1085.

    CAS  PubMed  Google Scholar 

  79. Jiang, Z., Vasil, A.I., Gera, L., Vasil, M.L., and Hodges, R.S., Chem. Biol. Drug Des., 2011, vol. 77, pp. 225–240.

    PubMed  PubMed Central  Google Scholar 

  80. Chen, Y., Guarnieri, M.T., Vasil, A.I., Vasil, M.L., Mant, C.T., and Hodges, R.S., Antimicrob. Agents Chemother., 2007, vol. 51, pp. 1398–1406.

    CAS  PubMed  Google Scholar 

  81. Almaaytah, A., Ajingi, Y., Abualhaijaa, A., Tarazi, S., Alshar’i, N., and Al-Balas, Q., Infect. Drug Resist., 2017, vol. 10, pp. 1–17.

    CAS  PubMed  Google Scholar 

  82. Silva, O.N., de la Fuente-Núñez, C., Haney, E.F., Fensterseifer, I.C.M., Ribeiro, S.M., Porto, W.F., Brown, P., Faria-Junior, C., Rezende, T.M.B., Moreno, S.E., Lu, T.K., Hancock, R.E.W., and Franco, O.L., Sci. Rep., 2016, vol. 6, p. 35 465.

    Google Scholar 

  83. Furman, J.L., Chiu, M., and Hunter, M.J., AAPS J., 2015, vol. 17, pp. 111–120.

    CAS  PubMed  Google Scholar 

  84. Vlieghe, P., Lisowski, V., Martinez, J., and Khrestchatisky, M., Drug Discov. Today, 2010, vol. 15, pp. 40–56.

    CAS  PubMed  Google Scholar 

  85. Wang, Y. and Tomlinson, B., Expert Opin. Investig. Drugs, 2009, vol. 18, pp. 303–310.

    CAS  PubMed  Google Scholar 

  86. Kimmerlin, T. and Seebach, D., J. Pept. Res., 2005, vol. 65, pp. 229–260.

    CAS  PubMed  Google Scholar 

  87. Hackenberger, C.P.R. and Schwarzer, D., Angew. Chemie Int. Ed., 2008, vol. 47, pp. 10 030–10 074.

    Google Scholar 

  88. Mühlberg, M., Jaradat, D.M.M., Kleineweischede, R., Papp, I., Dechtrirat, D., Muth, S., Broncel, M., and Hackenberger, C.P.R., Bioorg. Med. Chem., 2010, vol. 18, pp. 3679–3686.

    PubMed  Google Scholar 

  89. Karas, J.A., Patil, N.A., Tailhades, J., Sani, M.-A., Scanlon, D.B., Forbes, B.E., Gardiner, J., Separovic, F., Wade, J.D., and Hossain, M.A., Angew. Chemie Int. Ed., 2016, vol. 55, pp. 14 743–14 747.

    Google Scholar 

  90. Jaradat, D., J. Peptide Sci., 2016, vol. 22, p. S64.

    Google Scholar 

  91. Patil, N.A., Tailhades, J., Karas, J.A., Separovic, F., Wade, J.D., and Hossain, M.A., Angew. Chemie Int. Ed., 2016, vol. 55, pp. 14 552–14 556.

    Google Scholar 

  92. Jaradat, D.M.M., Hamouda, H., and Hackenberger, C.P.R., European J. Org. Chem., 2010, vol. 2010, pp. 5004–5009.

    Google Scholar 

  93. Isidro-Llobet, A., Alvarez, M., and Albericio, F., Chem. Rev., 2009, vol. 109, pp. 2455–2504.

    CAS  PubMed  Google Scholar 

  94. Behrendt, R., White, P., and Offer, J., J. Pept. Sci., 2016, vol. 22, pp. 4–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kent, S.B.H., Chem. Soc. Rev., 2009, vol. 38, pp. 338–351.

    CAS  PubMed  Google Scholar 

  96. Dawson, P.E. and Kent, S.B.H., Annu. Rev. Biochem., 2000, vol. 69, pp. 923–960.

    CAS  PubMed  Google Scholar 

  97. Thapa, P., Zhang, R.-Y., Menon, V., and Bingham, J.-P., Molecules, 2014, vol. 19, pp. 14 461–14 483.

    Google Scholar 

  98. Offer, J., Boddy, C.N.C., and Dawson, P.E., J. Am. Chem. Soc., 2002, vol. 124, pp. 4642–4646.

    CAS  PubMed  Google Scholar 

  99. Marinzi, C., Offer, J., Longhi, R., and Dawson, P.E., Bioorg. Med. Chem., 2004, vol. 12, pp. 2749–2757.

    CAS  PubMed  Google Scholar 

  100. Loibl, S.F., Harpaz, Z., Zitterbart, R., and Seitz, O., Chem. Sci., 2016, vol. 7, pp. 6753–6759.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bode, J.W., Fox, R.M., and Baucom, K.D., Angew. Chemie Int. Ed., 2006, vol. 45, pp. 1248–1252.

    CAS  Google Scholar 

  102. Harmand, T.J., Murar, C.E., and Bode, J.W., Nat. Protoc., 2016, vol. 11, p. 1130.

    CAS  PubMed  Google Scholar 

  103. Rohrbacher, F., Zwicky, A., and Bode, J.W., Chem. Sci., 2017, vol. 8, pp. 4051–4055.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Harmand, T.J., Pattabiraman, V.R., and Bode, J.W., Angew. Chemie Int. Ed., 2017, vol. 56, pp. 12 639–12 643.

    Google Scholar 

  105. Zhang, Y., Xu, C., Lam, H.Y., Lee, C.L., and Li, X., Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 6657–6662.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, C., Lam, H.Y., Zhang, Y., and Li, X., Chem. Commun., 2013, vol. 49, pp. 6200–6202.

    CAS  Google Scholar 

  107. Li, T. and Li, X., Chemical Ligation: Tools for Biomolecule Synthesis and Modification., 1st ed., Hobeken: Wiley, 2017, pp. 125–159.

  108. Glick, B.R. and Whitney, G.K., J. Ind. Microbiol., 1987, vol. 1, pp. 277–282.

    CAS  Google Scholar 

  109. Crowl, R., Seamans, C., Lomedico, P., and McAndrew, S., Gene, 1985, vol. 38, pp. 31–38.

    CAS  PubMed  Google Scholar 

  110. Fakruddin, M., Mazumdar, R.M., Bin Mannan, K.S., Chowdhury, A., and Hossain, M.N., ISRN Biotechnol., 2013, vol. 2013, pp. 1–7.

    Google Scholar 

  111. Demain, A.L. and Vaishnav, P., Biotechnol. Adv., 2009, vol. 27, pp. 297–306.

    CAS  PubMed  Google Scholar 

  112. Petsch, D. and Anspach, F.B., J. Biotechnol., 2000, vol. 76, pp. 97–119.

    CAS  PubMed  Google Scholar 

  113. Yoon, S.H., Kim, S.K., and Kim, J.F., Recent Pat. Biotechnol., 2010, vol. 4, pp. 23–29.

    CAS  PubMed  Google Scholar 

  114. Jana, S D., ApplmicrobiolBiotechnol, 2005, vol. 67, pp. 289–298.

    CAS  Google Scholar 

  115. Studier, F.W. and Moffatt, B.A., J. Mol. Biol., 1986, vol. 189, pp. 113–130.

    CAS  PubMed  Google Scholar 

  116. Khlebnikov, A., Skaug, T., and Keasling, J.D., J. Ind. Microbiol. Biotechnol., 2002, vol. 29, pp. 34–37.

    CAS  PubMed  Google Scholar 

  117. Andersen, D.C. and Krummen, L., Curr. Opin. Biotechnol., 2002, vol. 13, pp. 117–123.

    CAS  PubMed  Google Scholar 

  118. Itakura, K., Hirose, T., Crea, R., Riggs, A.D., Heyneker, H.L., Bolivar, F., and Boyer, H.W., Science, 1977, vol. 198, pp. 1056–1063.

    CAS  PubMed  Google Scholar 

  119. Hartley, J.L. and Gregori, T.J., Gene, 1981, vol. 13, pp. 347–353.

    CAS  PubMed  Google Scholar 

  120. Çelik, E. and Çalik P., Biotechnol. Adv., 2012, vol. 30, pp. 1108–1118.

    PubMed  Google Scholar 

  121. Ogata, K., Nishikawa, H., and Ohsugi, M., Agric. Biol. Chem., 1969, vol. 33, pp. 1519–1520.

    CAS  Google Scholar 

  122. Wegmuller, S. and Schmid, S., Curr. Org. Chem., 2014, vol. 18, pp. 1005–1019.

    CAS  Google Scholar 

  123. Cereghino, J.L. and Cregg, J.M., FEMS Microbiol. Rev., 2000, vol. 24, pp. 45–66.

    CAS  PubMed  Google Scholar 

  124. Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., and Cregg, J.M., Gene, 1997, vol. 186, pp. 37–44.

    CAS  PubMed  Google Scholar 

  125. Macauley-Patrick, S., Fazenda, M.L., McNeil, B., and Harvey, L.M., Yeast, 2005, vol. 22, pp. 249–270.

    CAS  PubMed  Google Scholar 

  126. De Pourcq, K., De Schutter, K., and Callewaert, N., Appl. Microbiol. Biotechnol., 2010, vol. 87, pp. 1617–1631.

    CAS  PubMed  Google Scholar 

  127. Kitson, S.M., Mullen, W., Cogdell, R.J., Bill, R.M., and Fraser, N.J., Methods, 2011, vol. 55, pp. 287–292.

    CAS  PubMed  Google Scholar 

  128. Bonander, N. and Bill, R.M., Expert Rev. Proteomics, 2009, vol. 6, pp. 501–505.

    CAS  PubMed  Google Scholar 

  129. Rebnegger, C., Graf, A.B., Valli, M., Steiger, M.G., Gasser, B., Maurer, M., and Mattanovich, D., Biotechnol. J., 2014, vol. 9, pp. 511–525.

    CAS  PubMed  Google Scholar 

  130. Kaufman R.J., Mol. Biotech., 2000, vol. 16, , pp. 151–160.

    Google Scholar 

  131. Yin, J., Li, G., Ren, X., and Herrler, G., J. Biotechnol., 2007, vol. 127, pp. 335–347.

    CAS  PubMed  Google Scholar 

  132. Huh, S., Do, H., Lim, H., Kim, D., Choi, S., Song, H., Kim, N., Park, J., Chang, W., Chung, H., and Kim, J., Biologicals, 2007, vol. 35, pp. 165–171.

    CAS  PubMed  Google Scholar 

  133. Jalah, R., Rosati, M., Kulkarni, V., Patel, V., Bergamaschi, C., Valentin, A., Zhang, G.M., Sidhu, M.K., Eldridge, J.H., Weiner, D.B., Pavlakis, G.N., and Felber, B.K., DNA Cell Biol., 2007, vol. 26, pp. 827–840.

    CAS  PubMed  Google Scholar 

  134. Birch, J.R. and Racher, A.J., Adv. Drug Deliv. Rev., 2006, vol. 58, pp. 671–685.

    CAS  PubMed  Google Scholar 

  135. Deer, J.R. and Allison, D.S., Biotechnol. Prog., 2004, vol. 20, pp. 880–889.

    CAS  Google Scholar 

  136. Cacciatore, J.J., Chasin, L.A., and Leonard, E.F., Biotechnol. Adv., 2010, vol. 28, pp. 673–681.

    CAS  PubMed  Google Scholar 

  137. Zhao, Q., Xu, W., Xing, L., and Lin, Z., Microb. Cell Fact., 2016, vol. 15, p. 136.

    PubMed  PubMed Central  Google Scholar 

  138. Pane, K., Verrillo, M., Avitabile, A., Pizzo, E., Varcamonti, M., Zanfardino, A., Di Maro, A., Rega, C., Amoresano, A., Izzo, V., Di Donato, A., Cafaro, V., and Notomista, E., Bioconjug. Chem., 2018, vol. 29, pp. 1373–1383.

    CAS  PubMed  Google Scholar 

  139. Bouza, E. and Muñoz, P., Med. Clin. North Am., 2000, vol. 84, pp. 1357–1389.

    CAS  PubMed  Google Scholar 

  140. Hollmann, A., Martinez, M., Maturana, P., Semorile, L.C., and Maffia, P.C., Front. Chem., 2018, vol. 6, pp. 1–13.

    Google Scholar 

  141. Wu, X., Li, Z., Li, X., Tian, Y., Fan, Y., Yu, C., Zhou, B., Liu, Y., Xiang, R., and Yang, L., Drug Des. Dev. Ther., 2017, vol. 11, pp. 939–946.

    CAS  Google Scholar 

  142. Lin, L., Nonejuie, P., Munguia, J., Hollands, A., Olson, J., Dam, Q., Kumaraswamy, M., River, H., Jr., Corriden, R., Rohde, M., Hensler, M.E., Burkart, M.D., Pogliano, J., Sakoulas, G., and Nizet, V., EBioMedicine, 2015, vol. 2, pp. 690–698.

    PubMed  PubMed Central  Google Scholar 

  143. Sakoulas, G., Bayer, A.S., Pogliano, J., Tsuji, B.T., Yang, S.-J., Mishra, N.N., Nizet, V., Yeaman, M.R., and Moise, P.A., Antimicrob. Agents Chemother., 2012, vol. 56, pp. 838–844.

    PubMed  PubMed Central  Google Scholar 

  144. Bessa, L.J., Eaton, P., Demate, A., Plácido, A., Vale, N., Gomes, P., Delerue-Matos, C., Leite, J.R.S.A., and Gameiro, P., Future Microbiol., 2018, vol. 13, pp. 151–163.

    CAS  PubMed  Google Scholar 

  145. Lewies, A., Wentzel, J.F., Jordaan, A., Bezuidenhout, C., and Du Plessis, L.H., Int. J. Pharm., 2017, vol. 526, pp. 244–253.

    CAS  PubMed  Google Scholar 

  146. Regmi, S., Choi, Y.S., Choi, Y.H., Kim, Y.K., Cho, S.S., Yoo, J.C., and Suh, J.-W., Int. Microbiol., 2017, vol. 20, pp. 43–53.

    CAS  PubMed  Google Scholar 

  147. Yu, G., Baeder, D.Y., Regoes, R.R., and Rolff, J., Antimicrob. Agents Chemother., 2016, vol. 60, pp. 1717–1724.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nuding, S., Frasch, T., Schaller, M., Stange, E.F., and Zabel, L.T., Antimicrob. Agents Chemother., 2014, vol. 58, pp. 5719–5725.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a research fund from the Faculty of Science, King Mongkut’s University of Technology Thonburi, KMUTT, and Petch Pra Jom Klao-Ph.D. Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nujarin Jongruja.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflict of interests.

Additional information

Abbreviations: AMPs, Antimicrobial peptides; HDPs, host defense peptides; MIC, minimum inhibitory concentration; CFU, colony forming unit; MRSA, methicillin-rersistant Staphylococcus aureus; MDR, multidrug resistant; MDRB, multidrug resistant bacteria; MBEC, minimum bactericidal eradication concentration; LPS, lipopolysaccharide; CPP, cell-penetrating peptide; Fmoc, 9-fluorenylmethoxycarbonyl; NiNTA, nickel nitrilotriacetic ncid; GEN, gentamycin; VAN, vancomycin; AZT, azithromycin; AMO, amoxicillin.

Corresponding author: e-mail: nujarin.jon@kmutt.ac.th.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ya’u Sabo Ajingi, Nujarin Jongruja Antimicrobial Peptide Engineering: Rational Design, Synthesis, and Synergistic Effect. Russ J Bioorg Chem 46, 463–479 (2020). https://doi.org/10.1134/S1068162020040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020040044

Keywords:

  • antimicrobial peptides
  • synthesis
  • engineering
  • design
  • recombinant production
  • synergy