Skip to main content
Log in

Comparative Analysis of Nucleotide Fluorescent Analogs for Registration of DNA Conformational Changes Induced by Interaction with Formamidopyrimidine-DNA Glycosylase Fpg

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

DNA-substrates containing fluorescent DNA base analogs are widely used to study protein–nucleic acid interactions. In the case of DNA-recognizing enzymes, this approach allows one to register conformational changes in DNA during the formation of enzyme–substrate complexes. An important part of such research is the design of model DNA substrates, which includes both the photophysical properties of the fluorescent groups and their location relative to a specific recognition site, namely, in the same chain on the 5′-, 3′-side or in the complementary chain opposite the specific site. In this work, we report a comparative study of the sensitivity of various fluorescent DNA base analogs, such as 2-aminopurine (aPu), pyrrolocytosine (CPy), 1,3-diaza-2-oxophenoxazine (tCO) and 3-hydroxychromone (3HC), to conformational transformations of DNA in the process of interaction with formamidopyrimidine-DNA glycosylase (Fpg) from Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, 3rd ed., New York: Springer, 2006.

    Book  Google Scholar 

  2. Carpenter, M.L., Oliver, A.W., and Kneale, G.G., Methods Mol. Biol., 2001, vol. 148, pp. 491–502.

    CAS  PubMed  Google Scholar 

  3. Sinkeldam, R.W., Greco, N.J., and Tor, Y., Chem. Rev., 2010, vol. 110, pp. 2579–2619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilhelmsson, L.M., Q. Rev. Biophys., 2010, vol. 43, pp. 159–183.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, K.T., Kim, H.W., Moon, D., Rhee, Y.M., and Kim, B.H., Org. Biomol. Chem., 2013, vol. 11, pp. 5605–5614.

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki, A., Takahashi, N., Okada, Y., Saito, I., Nemoto, N., and Saito, Y., Bioorg. Med. Chem. Lett., 2013, vol. 23, pp. 886–892.

    Article  CAS  PubMed  Google Scholar 

  7. Pawar, M.G., Nuthanakanti, A., and Srivatsan, S.G., Bioconjug. Chem., 2013, vol. 24, pp. 1367–77.

    Article  CAS  PubMed  Google Scholar 

  8. Pawar, M.G. and Srivatsan, S.G., J. Phys. Chem. B, 2013, vol. 117, pp. 14 273–14 282.

    Article  CAS  Google Scholar 

  9. Segal, M., Yavin, E., Kafri, P., Shav-Tal, Y., and Fischer, B., J. Med. Chem., 2013, vol. 56, pp. 4860–4869.

    Article  CAS  PubMed  Google Scholar 

  10. Ward, D.C., Reich, E., and Stryer, L., J. Biol. Chem., 1969, vol. 244, pp. 1228–1237.

    CAS  PubMed  Google Scholar 

  11. Kuznetsov, N.A., Koval, V.V., Nevinsky, G.A., Douglas, K.T., Zharkov, D.O., and Fedorova, O.S., J. Biol. Chem., 2007, vol. 282, pp. 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  12. Wong, I., Lundquist, A.J., Bernards, A.S., and Mosbaugh, D.W., J. Biol. Chem., 2002, vol. 277, pp. 19 424–19 432.

    Article  CAS  Google Scholar 

  13. Dunlap, C.A. and Tsai, M.D., Biochemistry, 2002, vol. 41, pp. 11 226–11 235.

    Article  CAS  Google Scholar 

  14. Purohit, V., Grindley, N.D.F., and Joyce, C.M., Biochemistry, 2003, vol. 42, pp. 10 200–10 211.

    Article  CAS  Google Scholar 

  15. Jia, Y., Kumar, A., and Patel, S.S., J. Biol. Chem., 1996, vol. 271, pp. 30 451–30 458.

    Article  Google Scholar 

  16. Mandal, S.S., Fidalgo da Silva, E., and Reha-Krantz, L.J., Biochemistry, 2002, vol. 41, pp. 4399–4406.

    Article  CAS  PubMed  Google Scholar 

  17. Kuznetsov, N.A., Koval, V.V., Zharkov, D.O., Vorobjev, Y.N., Nevinsky, G.A., Douglas, K.T., and Fedorova, O.S., Biochemistry, 2007, vol. 46, pp. 424–435.

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe, S.M. and Goodman, M.F., Proc. Natl. Acad. Sci. U. S. A., 1982, vol. 79, pp. 6429–6433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sowers, L.C., Fazakerley, G.V., Eritja, R., Karlan, B.E., and Goodman, M.F., Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, pp. 5434–5438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sowers, L.C., Boulard, Y., and Fazakerley, G.V., Biochemistry, 2000, vol. 39, pp. 7613–7620.

    Article  CAS  PubMed  Google Scholar 

  21. Zang, H., Fang, Q., Pegg, A.E., and Guengerich, F.P., J. Biol. Chem., 2005, vol. 280, pp. 30 873–30 881.

    Article  CAS  Google Scholar 

  22. Kuznetsova, A.A., Kuznetsov, N.A., Vorobjev, Y.N., Barthes, N.P.F., Michel, B.Y., Burger, A., and Fedorova, O.S., PLoS One, 2014, vol. 9. e100007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kuznetsov, N.A., Vorobjev, Y.N., Krasnoperov, L.N., and Fedorova, O.S., Nucleic Acids Res., 2012, vol. 40, pp. 7384–7392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, K. and Stanley, R.J., Photochem. Photobiol., 2008, vol. 84, pp. 741–749.

    Article  CAS  PubMed  Google Scholar 

  25. Sandin, P., Borjesson, K., Li, H., Martensson, J., Brown, T., Wilhelmsson, L.M., and Albinsson, B., Nucleic Acids Res., 2008, vol. 36, pp. 157–167.

    Article  CAS  PubMed  Google Scholar 

  26. Borjesson, K., Sandin, P., and Wilhelmsson, L.M., Biophys. Chem., 2009, vol. 139, pp. 24–28.

    Article  PubMed  CAS  Google Scholar 

  27. Stengel, G., Purse, B.W., Wilhelmsson, L.M., Urban, M., and Kuchta, R.D., Biochemistry, 2009, vol. 48, pp. 7547–7555.

    Article  CAS  PubMed  Google Scholar 

  28. Stengel, G., Urban, M., Purse, B.W., and Kuchta, R.D., Anal. Chem., 2009, vol. 81, pp. 9079–9085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodgers, B.J., Elsharif, N.A., Vashisht, N., Mingus, M.M., Mulvahill, M.A., Stengel, G., Kuchta, R.D., and Purse, B.W., Chemistry (Easton), 2014, vol. 20, pp. 2010–2015.

    CAS  Google Scholar 

  30. Sandin, P., Stengel, G., Ljungdahl, T., Borjesson, K., Macao, B., and Wilhelmsson, L.M., Nucleic Acids Res., 2009, vol. 37, pp. 3924–3933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuznetsov, N.A., Bergonzo, C., Campbell, A.J., Li, H., Mechetin, G.V., Santos, C., Grollman, A.P., Fedorova, O.S., Zharkov, D.O., and Simmerling, C., Nucleic Acids Res., 2015, vol. 43, pp. 272–281.

    Article  CAS  PubMed  Google Scholar 

  32. Kladova, O.A., Krasnoperov, L.N., Kuznetsov, N.A., and Fedorova, O.S., Genes (Basel), 2018, vol. 9. E190.

    Article  PubMed  CAS  Google Scholar 

  33. Kladova, O.A., Kuznetsova, A.A., Fedorova, O.S., and Kuznetsov, N.A., Genes (Basel), 2017, vol. 8, pp. 1–13.

    Article  CAS  Google Scholar 

  34. Spadafora, M., Postupalenko, V.Y., Shvadchak, V.V., Klymchenko, A.S., Mely, Y., Burger, A., and Benhida, R., Tetrahedron, 2009, vol. 65, pp. 7809–7816.

    Article  CAS  Google Scholar 

  35. Dziuba, D., Postupalenko, V.Y., Spadafora, M., Klymchenko, A.S., Guerineau, V., Mely, Y., Benhida, R., and Burger, A., J. Am. Chem. Soc., 2012, vol. 134, pp. 10 209–10 213.

    Article  CAS  Google Scholar 

  36. Demchenko, A.P., FEBS Lett., 2006, vol. 580, pp. 2951–2957.

    Article  CAS  PubMed  Google Scholar 

  37. Shynkar, V.V., Klymchenko, A.S., Kunzelmann, C., Duportail, G., Muller, C.D., Demchenko, A.P., Freyssinet, J.M., and Mely, Y., J. Am. Chem. Soc., 2007, vol. 129, pp. 2187–2193.

    Article  CAS  PubMed  Google Scholar 

  38. Das, R., Klymchenko, A.S., Duportail, G., and Mely, Y., Photochem. Photobiol. Sci., 2009, vol. 8, pp. 1583–1589.

    Article  CAS  PubMed  Google Scholar 

  39. Zharkov, D.O., Shoham, G., and Grollman, A.P., DNA Repair, 2003, vol. 2, pp. 839–862.

    Article  CAS  PubMed  Google Scholar 

  40. Tchou, J., Kasai, H., Shibutani, S., Chung, M.H., Laval, J., Grollman, A.P., and Nishimura, S., Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, pp. 4690–4694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boiteux, S., O’Connor, T.R., Lederer, F., Gouyette, A., and Laval, J., J. Biol. Chem., 1990, vol. 265, pp. 3916–3922.

    CAS  PubMed  Google Scholar 

  42. Koval, V.V., Kuznetsov, N.A., Zharkov, D.O., Ishchenko, A.A., Douglas, K.T., Nevinsky, G.A., and Fedorova, O.S., Nucleic Acids Res., 2004, vol. 32, pp. 926–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaika, E.I., Perlow, R.A., Matz, E., Broyde, S., Gilboa, R., Grollman, A.P., and Zharkov, D.O., J. Biol. Chem., 2004, vol. 279, pp. 4849–4861.

    Article  CAS  PubMed  Google Scholar 

  44. Karakaya, A., Jaruga, P., Bohr, V.A., Grollman, A.P., and Dizdaroglu, M., Nucleic Acids Res., 1997, vol. 25, pp. 474–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gilboa, R., Zharkov, D.O., Golan, G., Fernandes, A.S., Gerchman, S.E., Matz, E., Kycia, J.H., Grollman, A.P., and Shoham, G., J. Biol. Chem., 2002, vol. 277, pp. 19 811–19 816.

    Article  CAS  Google Scholar 

  46. Tchou, J. and Grollman, A.P., J. Biol. Chem., 1995, vol. 270, pp. 11 671–11 677.

    Article  Google Scholar 

  47. Zharkov, D.O., Rieger, R.A., Iden, C.R., and Grollman, A.P., J. Biol. Chem., 1997, vol. 272, pp. 5335–5341.

    Article  CAS  PubMed  Google Scholar 

  48. Bhagwat, M. and Gerlt, J.A., Biochemistry, 1996, vol. 35, pp. 659–665.

    Article  CAS  PubMed  Google Scholar 

  49. Tchou, J., Bodepudi, V., Shibutani, S., Antoshechkin, I., Miller, J., Grollman, A.P., and Johnson, F., J. Biol. Chem., 1994, vol. 269, pp. 15 318–15 324.

    Google Scholar 

  50. Fedorova, O.S., Nevinsky, G.A., Koval, V.V., Ishchenko, A.A., Vasilenko, N.L., and Douglas, K.T., Biochemistry, 2002, vol. 41, pp. 1520–1528.

    Article  CAS  PubMed  Google Scholar 

  51. Kuznetsov, N.A., Zharkov, D.O., Koval, V.V., Buckle, M., and Fedorova, O.S., Biochemistry, 2009, vol. 48, pp. 11 335–11 343.

    Article  CAS  Google Scholar 

  52. Kuznetsov, N.A., Milov, A.D., Isaev, N.P., Vorobjev, Y.N., Koval, V.V., Dzuba, S.A., Fedorova, O.S., and Tsvetkov, Y.D., Mol. Biosyst., 2011, vol. 7, pp. 2670–2680.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was partially supported by the basic budgetary investment of PFNI GAN 2013-2020, project no. ААА-А17-117020210022-4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Fedorova or N. A. Kuznetsov.

Ethics declarations

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interest

Authors declare they have no conflicts of interest.

Additional information

Translated by N. Onishchenko

Abbreviation: aPu, 2-aminopurine; CPy, pyrrolocytosine; DHU, 5,6-dihydrouracyl; Fpg, formamifopyrimidine-DNA glycosylase; oxoG, 8-oxoguanine; tCO, 1,3-diaza-2-oxofenoxasine; 3HC, 3-hydroxychromone.

Corresponding authors: e-mails: O.S.F., fedorova@ niboch.nsc.ru; nikita.kuznetsov@niboch.nsc.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, A.A., Kladova, O.A., Barthes, N.P. et al. Comparative Analysis of Nucleotide Fluorescent Analogs for Registration of DNA Conformational Changes Induced by Interaction with Formamidopyrimidine-DNA Glycosylase Fpg. Russ J Bioorg Chem 45, 591–598 (2019). https://doi.org/10.1134/S1068162019060256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019060256

Keywords:

Navigation