Skip to main content
Log in

New Fluorescent Analogs of Nucleotides Based on 3-Hydroxychromone for Recording Conformational Changes of DNA

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

It has recently been found that derivatives of nucleotides containing а 3-hydroxychromone fluorescent dye can be used as sensitive markers of conformational changes of DNA. In this work, a comparative analysis of two fluorescent nucleotide derivatives—3-hydroxychromone a (3HC) and 3HC-modified uridine (FCU)—was performed during the study of protein–nucleic acid interactions for several human DNA repair enzymes, removing damaged nucleotides: DNA glycosylases AAG, OGG1, UNG2, and MBD4 and AP endonuclease APE1. The changes of fluorescence intensity significantly depended on the nature of neighbor nucleotides and may be opposite in direction for different cases. The FCU residue located in the complementary strand opposite to damaged nucleotide or in the same strand moved by few nucleotides, is very sensitive to processes induced by DNA glycosylases in the course of formation of enzyme–substrate complexes, which include local melting and bending of the DNA chain, as well as eversion of the damaged nucleotide from DNA double helix and insertion of amino acids of the active site into the void.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Carpenter, M.L., Oliver, A.W., and Kneale, G.G., Methods Mol. Biol., 2001, vol. 148, pp. 491–502. https://doi.org/10.1385/1-59259-208-2:491

    Article  CAS  PubMed  Google Scholar 

  2. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, 3rd ed., New York: Springer, 2006.

    Book  Google Scholar 

  3. Sinkeldam, R.W., Greco, N.J., and Tor, Y., Chem. Rev., 2010, vol. 110, pp. 2579–2619. https://doi.org/10.1021/cr900301e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilhelmsson, L.M., Q. Rev. Biophysics, 2010, vol. 43, pp. 159–183. https://doi.org/10.1017/S0033583510000090

    Article  CAS  Google Scholar 

  5. Dunlap, C.A. and Tsai, M.D., Biochemistry, 2002, vol. 41, pp. 11 226–11 235. https://doi.org/10.1021/bi025837g

    Article  CAS  Google Scholar 

  6. Wong, I., Lundquist, A.J., Bernards, A.S., and Mosbaugh, D.W., J. Biol. Chem., 2002, vol. 277, pp. 19 424–19 432. https://doi.org/10.1074/jbc.M201198200

    Article  CAS  Google Scholar 

  7. Kuznetsov, N.A., Bergonzo, C., Campbell, A.J., Li, H., Mechetin, G.V., Santos, C., Grollman, A.P., Fedorova, O.S., Zharkov, D.O., and Simmerling, C., Nucleic Acids Res., 2015, vol. 43, pp. 272–281. https://doi.org/10.1093/nar/gku1300

    Article  CAS  PubMed  Google Scholar 

  8. Kuznetsova, A.A., Fedorova, O.S., and Kuznetsov, N.A., Molecules, 2018, vol. 23, p. 2101. https://doi.org/10.3390/molecules23092101

    Article  CAS  PubMed Central  Google Scholar 

  9. Alekseeva, I.V., Davletgildeeva, A.T., Arkova, O.V., Kuznetsov, N.A., and Fedorova, O.S., Biochimie, 2019, vol. 163, pp. 73–83. https://doi.org/10.1016/j.biochi.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  10. Kuznetsova, A.A., Iakovlev, D.A., Misovets, I.V., Ishchenko, A.A., Saparbaev, M.K., Kuznetsov, N.A., and Fedorova, O.S., Mol. Biosyst., 2017, vol. 13, pp. 2638–2649. https://doi.org/10.1039/c7mb00457e

    Article  CAS  PubMed  Google Scholar 

  11. Jean, J.M. and Hall, K.B., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 37–41. https://doi.org/ 10.1073ypnas.011442198

  12. Rachofsky, E.L., Osman, R., and Ross, J.B.A., Biochemistry, 2001, vol. 40, pp. 946–956. https://doi.org/10.1021/bi001664o

    Article  CAS  PubMed  Google Scholar 

  13. Zang, H., Fang, Q., Pegg, A.E., and Guengerich, F.P., J. Biol. Chem., 2005, vol. 280, pp. 30 873–30 881. https://doi.org/10.1074/jbc.M505283200

    Article  CAS  Google Scholar 

  14. Kuznetsov, N.A., Vorobjev, Y.N., Krasnoperov, L.N., and Fedorova, O.S., Nucleic Acids Res., 2012, vol. 40, pp. 7384–7392. https://doi.org/10.1093/nar/gks423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rist, M.J. and Marino, J.P., Curr. Org. Chem., 2002, vol. 6, pp. 775–793. https://doi.org/10.2174/1385272023373914

    Article  CAS  Google Scholar 

  16. Berry, D.A., Jung, K.Y., Wise, D.S., Sercel, A.D., Pearson, W.H., Mackie, H., Randolph, J.B., and Somers, R.L., Tetrahedron Lett., 2004, vol. 45, pp. 2457–2461. https://doi.org/10.1016/j.tetlet.2004.01.108

    Article  CAS  Google Scholar 

  17. Sandin, P., Borjesson, K., Li, H., Martensson, J., Brown, T., Wilhelmsson, L.M., and Albinsson, B., Nucleic Acids Res., 2008, vol. 36, pp. 157–167. https://doi.org/10.1093/nar/gkm1006

    Article  CAS  PubMed  Google Scholar 

  18. Borjesson, K., Sandin, P., and Wilhelmsson, L.M., Biophys. Chem., 2009, vol. 139, pp. 24–28. https://doi.org/10.1016/j.bpc.2008.09.021

    Article  CAS  PubMed  Google Scholar 

  19. Kuznetsov, N.A., Kladova, O.A., Kuznetsova, A.A., Ishchenko, A.A., Saparbaev, M.K., Zharkov, D.O., and Fedorova, O.S., J. Biol. Chem., 2015, vol. 290, pp. 14 338–14 349. https://doi.org/10.1074/jbc.M114.621128

    Article  CAS  Google Scholar 

  20. Kladova, O.A., Kuznetsov, N.A., and Fedorova, O.S., Acta Naturae, 2019, vol. 11, pp. 29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kladova, O.A., Krasnoperov, L.N., Kuznetsov, N.A., and Fedorova, O.S., Genes (Basel), 2018, vol. 9, p. 190. https://doi.org/10.3390/genes9040190

    Article  CAS  Google Scholar 

  22. Dziuba, D., Postupalenko, V.Y., Spadafora, M., Klymchenko, A.S., Guerineau, V., Mely, Y., Benhida, R., and Burger, A., J. Am. Chem. Soc., 2012, vol. 134, pp. 10 209–10 213. https://doi.org/10.1021/ja3030388

    Article  CAS  Google Scholar 

  23. Gavvala, K., Barthes, N.P.F., Bonhomme, D., Dabert-Gay, A.S., Debayle, D., Michel, B.Y., Burger, A., and Mely, Y., RSC Adv., 2016, vol. 81, pp. 10 733–10 741. https://doi.org/10.1021/acs.joc.6b01807

    Article  CAS  Google Scholar 

  24. Kuznetsova, A.A., Kuznetsov, N.A., Vorobjev, Y.N., Barthes, N.P.F., Michel, B.Y., Burger, A., and Fedorova, O.S., PLoS One, 2014, vol. 9. e100007. https://doi.org/10.1371/journal.pone.0100007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brooks, S.C., Adhikary, S., Rubinson, E.H., and Eichman, B.F., Biochim. Biophys. Acta, 2013, vol. 1834, pp. 247–271. https://doi.org/10.1016/j.bbapap.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  26. Lau, A.Y., Scharer, O.D., Samson, L., Verdine, G.L., and Ellenberger, T., Cell, 1998, vol. 95, pp. 249–258.

    Article  CAS  PubMed  Google Scholar 

  27. Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D., and Ellenberger, T., Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 13 573–13 578. https://doi.org/10.1073/pnas.97.25.13573

    Article  Google Scholar 

  28. Setser, J.W., Lingaraju, G.M., Davis, C.A., Samson, L.D., and Drennan, C.L., Biochemistry, 2012, vol. 51, pp. 382–390. https://doi.org/10.1021/bi201484k

    Article  CAS  PubMed  Google Scholar 

  29. Parikh, S.S., Mol., C.D., Slupphaug, G., Bharati, S., Krokan, H.E., and Tainer, J.A., EMBO J., 1998, vol. 17, pp. 5214–5226. https://doi.org/10.1093/emboj/17.17.5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manvilla, B.A., Maiti, A., Begley, M.C., Toth, E.A., and Drohat, A.C., J. Mol. Biol., 2012, vol. 420, pp. 164–175. https://doi.org/10.1016/j.jmb.2012.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mol., C.D., Izumi, T., Mitra, S., Talner, J.A., and Tainer, J.A., Nature, 2000, vol. 403, pp. 451–456. https://doi.org/10.1038/35000249

    Article  CAS  PubMed  Google Scholar 

  32. Bruner, S.D., Norman, D.P., and Verdine, G.L., Nature, 2000, vol. 403, pp. 859–866. https://doi.org/10.1038/35002510

    Article  CAS  PubMed  Google Scholar 

  33. Bjoras, M., Seeberg, E., Luna, L., Pearl, L.H., and Barrett, T.E., J. Mol. Biol., 2002, vol. 317, pp. 171–177. https://doi.org/10.1006/jmbi.2001.5400

    Article  CAS  PubMed  Google Scholar 

  34. Norman, D.P., Chung, S.J., and Verdine, G.L., Biochemistry, 2003, vol. 42, pp. 1564–1572. https://doi.org/10.1021/bi026823d

    Article  CAS  PubMed  Google Scholar 

  35. Banerjee, A., Yang, W., Karplus, M., and Verdine, G.L., Nature, 2005, vol. 434, pp. 612–618. https://doi.org/10.1038/nature03458

    Article  CAS  PubMed  Google Scholar 

  36. Miroshnikova, A.D., Kuznetsova, A.A., Kuznetsov, N.A., and Fedorova, O.S., Acta Naturae, 2016, vol. 8, pp. 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miroshnikova, A.D., Kuznetsova, A.A., Vorobjev, Y.N., Kuznetsov, N.A., and Fedorova, O.S., Mol. BioSyst., 2016, vol. 12, pp. 1527–1539. https://doi.org/10.1039/c6mb00128a

    Article  CAS  PubMed  Google Scholar 

  38. Kanazhevskaya, L.Y., Koval, V.V., Vorobjev, Y.N., and Fedorova, O.S., Biochemistry, 2012, vol. 51, pp. 1306–1321. https://doi.org/10.1021/bi201444m

    Article  CAS  PubMed  Google Scholar 

  39. Kuznetsov, N.A., Koval, V.V., Zharkov, D.O., Nevinsky, G.A., Douglas, K.T., and Fedorova, O.S., Nucleic Acids Res., 2005, vol. 33, pp. 3919–3931. https://doi.org/10.1093/nar/gki694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuznetsova, A.A., Kuznetsov, N.A., Ishchenko, A.A., Saparbaev, M.K., and Fedorova, O.S., Biochim. Biophys. Acta, 2014, vol. 1840, pp. 387–395. https://doi.org/10.1016/j.bbagen.2013.09.035

    Article  CAS  PubMed  Google Scholar 

  41. Slupphaug, G., Eftedal, I., Kavli, B., Bharati, S., Helle, N.M., Haug, T., Levine, D.W., and Krokan, H.E., Biochemistry, 1995, vol. 34, pp. 128–138. https://doi.org/10.1021/Bi00001a016

    Article  CAS  PubMed  Google Scholar 

  42. Saparbaev, M., Langouet, S., Privezentzev, C.V., Guengerich, F.P., Cai, H., Elder, R.H., and Laval, J., J. Biol. Chem., 2002, vol. 277, pp. 26 987–26 993. https://doi.org/10.1074/jbc.M111100200

    Article  CAS  Google Scholar 

  43. Kuznetsov, N.A., Kiryutin, A.S., Kuznetsova, A.A., Panov, M.S., Barsukova, M.O., Yurkovskaya, A.V., and Fedorova, O.S., J. Biomol. Struct. Dyn., 2017, vol. 35, pp. 950–967. https://doi.org/10.1080/07391102.2016.1171800

    Article  CAS  PubMed  Google Scholar 

  44. Morera, S., Grin, I., Vigouroux, A., Couve, S., Henriot, V., Saparbaev, M., and Ishchenko, A.A., Nucleic Acids Res., 2012, vol. 40, pp. 9917–9926. https://doi.org/10.1093/nar/gks714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yakovlev, D.A., Kuznetsova, A.A., Fedorova, O.S., and Kuznetsov, N.A., Acta Naturae, 2017, vol. 9, pp. 88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daviet, S., Couve-Privat, S., Gros, L., Shinozuka, K., Ide, H., Saparbaev, M., and Ishchenko, A.A., DNA Repair, 2007, vol. 6, pp. 8–18. https://doi.org/10.1016/j.dnarep.2006.08.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was partially supported by the basic budgetary investment of PFNI GAN 2013-2020, project no. ААА-А17-117020210022-4. Part of the work concerning the analysis of experimental data obtained for human AP endonuclease was supported by the Russian Science Foundation project no. 18-14-00135. Part of the work concerning the analysis of experimental data obtained for DNA glycosylases MBD4 and UNG2 was supported by the Russian Science Foundation project no. 16-14-10038.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Fedorova or N. A. Kuznetsov.

Ethics declarations

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interest.

Additional information

Translated by N. Onishchenko

Abbreviations: aPu, 2-aminopurine; CPy, pyrollocytosine; tCO, 1,3-diaza-2-oxophenoxazine; 3-HC, 3-hydroxychromone; FCU, 2-furyl-3-HC-uracyl moiety; F site, 2-hydroxymethyl-3-hydroxytetrahydrofurane; AP site, apurine–apyrimidine site; AAG, alkyladenine-DNA glycosylase; APE1, human AP endonuclease; Hx, hypoxanthine; MBD4, human methylcytosine-binding domain 4; OGG1, human 8-oxoguanine-DNA glycosylase; UNG2, uracyl-DNA glycosylase.

The authors contributed equally to the work.

Corresponding authors: e-mails: fedorova@niboch.nsc.ru; nikita.kuznetsov@niboch.nsc.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kladova, O.A., Kuznetsova, A.A., Barthes, N.P. et al. New Fluorescent Analogs of Nucleotides Based on 3-Hydroxychromone for Recording Conformational Changes of DNA. Russ J Bioorg Chem 45, 599–607 (2019). https://doi.org/10.1134/S1068162019060220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019060220

Keywords:

Navigation