Skip to main content
Log in

Hydrolysates of Soybean Proteins for Starter Feeds of Aquaculture: The Behavior of Proteins upon Fermentolysis and the Compositional Analysis of Hydrolysates

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Currently, soybean occupies the first place as a global protein source for replacing fish meal in animal and aquaculture feeds. Since at the stage of fish postembryonic development, before the switch to active feeding, the efficacy of proteolysis in larvae is not high enough, soybean proteins in starter feeds should be hydrolyzed. The hydrolysate composition and behavior of the resulting protein fragments were shown to differ when soybean proteins were hydrolyzed by different enzyme preparations: the enzyme complex from the hepatopancreas of the Kamchatka crab (EC HPKC), protosubtilin, and the enzyme complex from pyloric appendage of cod (EC PAC). The most active enzyme preparation among them was EC HPKC, which demonstrated a high proteolytic activity at room temperature. Upon hydrolysis by EC HPKC, the yield of soluble hydrolysis products was 92% per weight of the initial protein material. Depending on the incubation time, the hydrolysates contained up to 60% of free amino acids (per weight of the hydrolyzed protein mixture) and short peptides less than 3 kDa. The use of protosubtilin or EC PAC at room temperature resulted in the intensive gelation and coagulation of the formed protein fragments resistant to further degradation. In order to achieve the yield of soluble hydrolysis products comparable with that for EC HPKC, it was necessary to increase the temperature. The yield of soluble products upon the EC PAC-induced hydrolysis of soybean proteins at 37°C achieved 82–88% of the initial protein material. The greatest part of the hydrolysate was represented by low-molecular-weight peptides with a molecular weight lower than 10 kDa and free amino acids (20.16% of the weight of the hydrolyzed protein mixture). Although the optimal temperature for the protosubtilin activity is 40–60°C according to the manufacturer’s data we did not perform hydrolysis in the presence of protosubtilin at this temperature because of the hazard to sulfur-containing amino acids. The content of free amino acids and the size of protein fragments in the soybean protein hydrolysates obtained upon the EC HPKC-induced hydrolysis at room temperature and with EC PAC at 37°C met the requirements for the fish starter feeds. Manipulations with such parameters as the hydrolysis time and the enzyme complex/protein ratio for the used enzyme preparations allow to prepare soybean protein hydrolysates differing in their hydrolysis degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Salunkhe, D.K., Adsule, R.N., Chavan, J.K., and Kadam, S.S., World Oilseeds. Chemistry, Technology and Utilization, New York: Springer, 1992.

  2. Slawski, H., Adem, H., Tressel, R.P., Wysujack, K., Koops, U., and Schulzet, C., Aquaculture, 2011, vol. 63, pp. 605–611.

    Google Scholar 

  3. Ravindran, V., Abdollahi, M.R., and Bootwalla, S.M., Poult. Sci., 2014, vol. 93, pp. 2567–2577.

    Article  CAS  PubMed  Google Scholar 

  4. Kinsella, J.E., J. Am. Oil Soc., 1979, vol. 56, pp. 242–258.

    Article  CAS  Google Scholar 

  5. Collins, S.A., Desai, A.R., Mansfield, G.S., Hill, J.E., Van Kessel, A.G., and Drew, M.D., Aquaculture, 2012, vols. 344–349, pp. 90–99.

  6. Hua, K. and Bureau, D.P., Aquaculture, 2012, vol. 356–357, pp. 284–301.

    Article  CAS  Google Scholar 

  7. Francis, G., Makkar, H., and Bekker, K., Aquaculture, 2001, vol. 199, pp. 197–227.

    Article  CAS  Google Scholar 

  8. Murashita, K., Akimototo, A., Iwashita, Ya., Amano, Sh., Suzuki, N., Matsunari, H., Furuita, H., Sugita, T., and Yamamoto, T., Fish Sci., 2013, vol. 79, pp. 447–457.

    Article  CAS  Google Scholar 

  9. Krogdahl, A., Penn, M., Thorsen, J., Refstie, S., and Bakke, A., Aquac. Res., 2010, vol. 41, pp. 333–344.

    Article  CAS  Google Scholar 

  10. Vioque, J., Sanchez-Vioque, R., Clemente, A., Pedroche, J., Bautista, J., and Millan, F., J. Am. Oil Chem. Soc., 1999, vol. 76, pp. 819–823.

    Article  CAS  Google Scholar 

  11. Xiang Dong Sun, Int. J. Food Sci. Technol., 2011, vol. 46, pp. 2447–2459.

    Article  CAS  Google Scholar 

  12. Lahi, W.J. and Braun, S.D., Food Technol., 1994, vol. 48, pp. 68–75.

    Google Scholar 

  13. Rønnestad, I., Yufera, M., Ueberschär, B., Ribeiro, L., Saele, Oy., and Boglione, C., Rev. Aquacult., 2013, vol. 5, pp. S59–S98.

    Article  Google Scholar 

  14. Hamre, K., Yufera, M., Rønnestad, I., Boglione, C., Concenciao, L., and Izquierdo, M., Rev. Aquacult., 2013, vol. 5, pp. S26–S58.

    Article  Google Scholar 

  15. Dabrowski, K., Zhang, Yo., Kwasck, K., Hliwa, P., and Ostaszelwska, T., Acquacult. Res., 2010, vol. 41, pp. 668–683.

    Article  CAS  Google Scholar 

  16. Berge, G.M. and Storebakken, T., Aquaculture, 1996, vol. 145, pp. 205–212.

    Article  CAS  Google Scholar 

  17. Sergazieva, O.D. and Dolganova, N.V., Vestn. Astrakh. Gos. Tech. Univ., Ser. Rybn. Khoz., 2011, no. 1, pp. 69–74.

  18. Ponomarev, S.V., Gamygin, B.A., and Kanid’ev, A.N., Vestn. Astrakh. Gos. Tech. Univ., Ser. Rybn. Khoz., 2010, no. 1, pp. 132–139.

  19. Chiang, W.-D., Shih, C.-J., and Chu, Y.-H., Food Chem., 1999, vol. 65, pp. 189–194.

    Article  CAS  Google Scholar 

  20. Hrĉková, M., Rusňáková, M., and Zemanoviĉ, J., Czech. J. Food Sci., 2002, vol. 20, pp. 7–14.

    Article  Google Scholar 

  21. Caldéron De La Barca, A.M., Ruiz-Salazar, R.A., and Jara-Marini, M.E., J. Food Sci., 2000, vol. 65, pp. 246–253.

    Article  Google Scholar 

  22. Kuipers, B.J., van Koningsveld, G.A., Alting, A.C., Driehuis, F., Gruppen, H., and Voragen, A.G., J. Agric. Food Chem., 2005, vol. 53, pp. 1031–1038.

    Article  CAS  PubMed  Google Scholar 

  23. Zinchenko, D.V., Muranova, T.A., Melanina, L.A., Belova, N.A., and Miroshnikov, A.I., Appl. Biochem. Microbiol., 2018, vol. 54, pp. 294–300.

    Article  CAS  Google Scholar 

  24. Muranova, T.A., Zinchenko, D.V., Melanina, L.A., and Miroshnikov, A.I., Appl. Biochem. Microbiol., 2018, vol. 54, pp. 76–82.

    Article  CAS  Google Scholar 

  25. Zinchenko, D.V., Muranova, T.A., Melanina, L.A., and Miroshnikov, A.I., Appl. Biochem. Microbiol., 2019, vol. 55 (in press).

  26. Nishinary, K.Y., Fang, S.Guo., and Philips, G.O., Food Hydrocolloids, 2014, vol. 39, pp. 301–318.

    Article  CAS  Google Scholar 

  27. Sexton, P.J., Paek, N.C., and Shibles, R.M., Field Crops Res., 1998, vol. 59, pp. 1–8.

    Article  Google Scholar 

  28. Smith, A.K., Rackis, J.J., Isnardi, P., Cartter, J.L., and Krober, O.A., Gen. Chem., 1966, vol. 43, pp. 261–270.

    CAS  Google Scholar 

  29. Clark, A.H., Gelation of Globular Proteins, Hill, S.E., Ledward, D.A., and Mitchell, J.R., Eds., New York: Springer, 1998, 2nd ed.

    Google Scholar 

  30. Doucet, D., Gauthier, S.F., and Foegeding, E.A., J. Food Sci., 2001, vol. 66, pp. 711–715.

    Article  CAS  Google Scholar 

  31. Ipsen, R., Otte, J., Lomholt, S.B., and Quist, K.B., J. Dairy Res., 2000, vol. 67, pp. 403–413.

    Article  CAS  PubMed  Google Scholar 

  32. Francis, G., Makkar, H., and Bekker, K., Aquaculture, 2001, vol. 199, pp. 197–227.

    Article  CAS  Google Scholar 

  33. Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S., and Marc, I., Process Biochem., 2007, vol. 42, pp. 1419–1428.

    Article  CAS  Google Scholar 

  34. Ravindran, V., Abdollahi, M.R., and Bootwalla, S.M., Poult. Sci., 2014, vol. 93, pp. 2567–2577.

    Article  CAS  PubMed  Google Scholar 

  35. Pedroche, J., Yust Mdel, M., Lqari, H., Megías, C., Girón-Calle, J., Alaiz, M., Millan, F., and Vioque, J., J. Agric. Food Chem., 2006, vol. 54, pp. 7621–7627.

    Article  CAS  PubMed  Google Scholar 

  36. Ghodsvali, A., Khodaparast, M.H.H., Vosough, M., and Diasady, L.L., Food Res. Int., 2005, vol. 38, pp. 223–231.

    Article  CAS  Google Scholar 

  37. Rudenskaya, G.N., Isaev, V.A., Shmoylov, A.M., Karabasova, M.A., Shvets, S.V., Miroshnikov, A.I., and Brusov, A.B., Appl. Biochem. Biotechnol., 2000, vol. 88, pp. 175–183.

    Article  CAS  Google Scholar 

  38. Rudenskaya, G.N., Russ. J. Bioorg. Chem., 2003, vol. 29, no. 2, pp. 101–111.

    Article  CAS  Google Scholar 

  39. Inouye, K., Nagai, K., and Teisuke, T., J. Agric. Food Chem., 2002, vol. 50, pp. 1237–1242.

    Article  CAS  PubMed  Google Scholar 

  40. Bernardi Don, L.S., Pilosof, A.M.R., and Bartholomi, G.B., J. Am. Oil Chem. Soc., 1991, vol. 68, no. 2, pp. 102–105.

    Article  CAS  Google Scholar 

  41. Tang, C.-H., Wu, H., Yu, H.-P., Li, L., Chen, Z., and Yang, X.Q., J. Food Biochem., 2006, vol. 30, pp. 35–55.

    Article  CAS  Google Scholar 

  42. Caldéron De La Barca, A.M., Ruiz-Salazar, R.A., and Jara-Marini, M.E., J. Food Sci., 2000, vol. 65, pp. 246–253.

    Article  Google Scholar 

  43. Kuipers, B.J.H., van Koningsveld, G.A., Alting, A.C., Driehuis, F., Gruppen, H., and Voragen, A.G.J., J. Agric. Food Chem., 2005, vol. 53, pp. 1031–1038.

    Article  CAS  PubMed  Google Scholar 

  44. Buddington, R.K. and Diamond, J.M., Proc. Natl. Acad. Sci. U. S. A., 1986, vol. 83, pp. P. 8012–8014.

  45. Mankura, M., Kayama, M., and Saito, S., Bull. Jpn. Soc. Sci. Fish., 1984, vol. 50, pp. 2127–2131.

    Article  CAS  Google Scholar 

  46. Hau, P.V. and Benjakul, S., J. Food Biochem., 2006, vol. 30, pp. 478–495.

    Article  Google Scholar 

  47. Lu, B.-J., Zhou, L.-G., Cai, Q.-F.,  Hara, K.,  Maeda, A.,  Su, W.-J., and Cao, M.-J., Food Chem., 2008, vol. 110, pp. 352–360.

    Article  CAS  PubMed  Google Scholar 

  48. Khantaphant, S. and Benjakue, S., Food Chem., 2010, vol. 120, pp. 658–664.

    Article  CAS  Google Scholar 

  49. Kalinichenko, T.P. and Kolmakova, L.P., Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2005, vol. 140, pp. 285–290.

    Google Scholar 

  50. Simpson, B.K. and Haard, N.F., Comp. Biochem. Physiol. B, 1984, vol. 79, pp. 613–622.

    Article  CAS  PubMed  Google Scholar 

  51. Simpson, B.K., in Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality, Haard, N.F. and Simpson, B.K., Eds., Dekker, 2000, pp. 531–540.

    Google Scholar 

  52. Bezerra, R.S., Santos, J.F., Paiva, P.M.G., Correia, M.T.S., Coelho, L.C.B.B., and Vieira, V.L.A., J. Food Biochem., 2001, vol. 25, pp. 199–210.

    Article  CAS  Google Scholar 

  53. Kishimura, H. and Hayashi, K., Comp. Biochem. Physiol. B, 2002, vol. 132, pp. 485–490.

    Article  PubMed  Google Scholar 

  54. Klomklao, S., Benjakul, S., and Visessanguan, W., J. Food Chem., 2003, vol. 28, pp. 355–372.

    Google Scholar 

  55. Castillo-Yanez, F.J., Pacheco-Aguilar, R., Garcia-Carreno, F.L., and Toro, M.A.N., Comp. Biochem. Physiol. B, 2005, vol. 140, pp. 91–98.

    Article  CAS  PubMed  Google Scholar 

  56. Kishimura, H., Hayashi, K., Miyashita, Y., and Nonami, Y., Food Chem., 2006, vol. 97, pp. 65–70.

    Article  CAS  Google Scholar 

  57. Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., and Simpson, B.K., J. Agric. Food Chem., 2006, vol. 54, pp. 5617–5622.

    Article  CAS  PubMed  Google Scholar 

  58. Grozesku, Yu.N., Bakhareva, A.A., and Shul’gina, E.A., Rybovod. Rybn. Khoz., 2011, no. 4, pp. 49–52.

  59. Alamdari, Kh., Dolganova, N.V., Ponomarev, S.V., and Vinnov, A.S., Vestn. Astrakh. Gos. Tech. Univ., Ser. Rybn. Khoz., 2013, no. 2, pp. 172–177.

  60. Busev, A.I., Kolorimetricheskie (fotometricheskie) metody opredeleniya nemetallov (Colorimetric (Photometric) Methods for Determination of Non-Metals), Moscow: Izd. Inostr. Lit., 1963.

  61. Zaprometov, M.N., Biokhimiya katekhinov (Biochemistry of Catechins), Moscow: Nauka, 1964.

  62. Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  63. Laemmly, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Zinchenko.

Additional information

Translated by E. Shirokova

Abbreviations: EC, enzymatic complex; HPKC, hepatopancreas    of the Kamchatka crab; PAC, pyloric appendage of cod. 1Corresponding author: phone: +7 (926) 277-5271; e-mail:   zdv@bibch.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muranova, T.A., Zinchenko, D.V. & Miroshnikov, A.I. Hydrolysates of Soybean Proteins for Starter Feeds of Aquaculture: The Behavior of Proteins upon Fermentolysis and the Compositional Analysis of Hydrolysates. Russ J Bioorg Chem 45, 195–203 (2019). https://doi.org/10.1134/S1068162019030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019030038

Keywords:

Navigation