Skip to main content
Log in

Optimization of the Technology for the Preparation of Cationic Liposomes for the Delivery of Nucleic Acids

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Cationic liposomes based on the cationic lipid 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)- 7,11,16-2-tetraazahexacosane tetrahydrochloride (2X3) and the helper lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been prepared by two methods, namely ultrasonication and the extrusion of a lipid dispersion. The effect of the preparation method and the type of the water phase on the physicochemical characteristics of cationic liposomes and their biological activity has been studied. The optimization of the preparation of cationic liposomes made it possible to determine the technological parameters providing the reproducibility of physicochemical characteristics of liposomes from batch to batch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2Х3:

1,26-bis(cholest-5-en-3β-yloxycarbonylamino)- 7,11,16-2-tetraazahexacosane tetrahydrochloride

DOPE:

1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine

EGFP:

enhanced green fluorescent protein

FBS:

fetal bovine serum

PBS:

phosphate-buffered saline, pH 7.6

siRNA:

small interfering RNA

ODN:

oligodeoxyribonucleotide

pDNA:

plasmid DNA

PAG:

polyacrylamide gel

References

  1. Jellema, R.K., Bomans, P., Deckers, N., Ungethum, L., Reutelingsperger, C.P.M., Hofstra, L., and Frederik, P.M., J. Lipos. Res., 2010, vol. 20, pp. 258–267.

    Article  CAS  Google Scholar 

  2. Wang, Y., Miao, L., Satterlee, A., and Huang, L., Adv. Drug Deliv. Rev., 2015, vol. 87, pp. 68–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Godbey, W.T. and Mikos, A.G., J. Control. Release, 2001, vol. 72, pp. 115–125.

    Article  CAS  PubMed  Google Scholar 

  4. Torchilin, V.P., Nature Rev., 2005, vol. 4, pp. 145–160.

    CAS  Google Scholar 

  5. Ju, J., Huan, M.-L., Wana, N., Hou, Y.-L., Maa, X.-X., Jia, Y.-Y., Li, C., Zhou, S.-Y., and Zhang, B.-L., Bioorg. Med. Chem., 2016, vol. 26, pp. 2401–2407.

    Article  CAS  Google Scholar 

  6. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S.-W., and Zarghami, N., Nanoscale Res. Lett., 2013, vol. 8, p. 102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tarahovsky, Y.S., Biochemistry, 2009, vol. 74, pp. 1293–1304.

    CAS  PubMed  Google Scholar 

  8. Petros, R.A. and DeSimone, J.M., Nat. Rev. Drug Discov., 2010, vol. 9, pp. 615–627.

    Article  CAS  PubMed  Google Scholar 

  9. Verma, A. and Stellacci, F., Nanomater.–Cell Interact., 2010, vol. 6, pp. 12–21.

    CAS  Google Scholar 

  10. Cullis, P.R. and Kruijff, B.D., Biochim. Biophys. Acta, 1979, vol. 559, pp. 399–420.

    Article  CAS  PubMed  Google Scholar 

  11. Farhood, H., Serbina, N., and Huang, L., Biochim. Biophys. Acta, 1995, vol. 1235, pp. 289–295.

    Article  PubMed  Google Scholar 

  12. Hafez, I.M. and Cullis, P.R., Adv. Drug Deliv. Rev., 2001, vol. 47, pp. 139–148.

    Article  CAS  PubMed  Google Scholar 

  13. Hafez, I.M., Maurer, N., and Cullis, P.R., Gene Ther., 2001, vol. 8, pp. 1188–1196.

    Article  CAS  PubMed  Google Scholar 

  14. Koltover, I., Science, 1998, vol. 281, pp. 78–81.

    Article  CAS  PubMed  Google Scholar 

  15. Richardson, E.S., Woodbury, D.J., and Pitt, W.G., Biophys. J., 2007, vol. 93, pp. 4100–4107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho, N.J., Hwang, L.Y., Solandt, J.J.R., and Frank, C.W., Materials, 2013, vol. 6, pp. 3294–3308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jafari, M., Soltani, M., Naahidi, S., Karunaratne, D.N., and Chen, P., Cur. Med. Chem., 2012, vol. 19, pp. 197–208.

    Article  CAS  Google Scholar 

  18. Findeis, M.A., Meth. Mol. Med., 2001, pp. 135–136.

    Google Scholar 

  19. Bavykin, A.S., Korotaeva, A.A., Poyarkov, S.V., Syrtsev, A.V., Tjulandin, S.A., and Karpukhin, A.V., Onco Targets Ther., 2013, vol. 6, pp. 1333–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petukhov, I.A., Maslov, M.A., Morozova, N.G., and Serebrennikova, G.A., Russ. Chem. Bull., 2010, vol. 59, pp. 260–268.

    Article  CAS  Google Scholar 

  21. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R., and Saigo, K., Nucleic Acids Res., 2004, vol. 32, pp. 936–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Maslov.

Additional information

Proceedings of the Conference “Lipids of XXI Century. The First Quarter,” Moscow, 22–23 October 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luneva, A.S., Puchkov, P.A., Shmendel, E.V. et al. Optimization of the Technology for the Preparation of Cationic Liposomes for the Delivery of Nucleic Acids. Russ J Bioorg Chem 44, 724–731 (2018). https://doi.org/10.1134/S1068162019010084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019010084

Keywords

Navigation