Skip to main content
Log in

Efficiency of Bioluminescence Resonance Energy Transfer in the NanoLuc-miniSOG-Furimazine System

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a clinically approved, minimally invasive method for tumor destruction in the presence of a photosensitizer (PS), oxygen, and a light source. The main obstacle for the PDT treatment of deep tumors is the problem of the excitation light delivery inside the body without reduction of light intensity. An internal light source based on a bioluminescence system NanoLuc-furimazine can be considered as an alternative to an external light source. This system can be successfully used to excite a protein photosensitizer miniSOG and induce its phototoxicity in cancer cells as a result of bioluminescent resonance energy transfer. In this paper, the effectiveness of bioluminescent resonance energy transfer in the NanoLuc-miniSOG-furimazine system in living cells was studied. The efficiency of the energy transfer in this system was found to be independent of the furimazine concentration, while intracellular localization of the NanoLuc-miniSOG hybrid protein was found to be a crucial factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PDT:

photodynamic therapy

PS:

photosensitizer

BRET:

bioluminescence resonance energy transfer

FRET:

fluorescence resonance energy transfer

References

  1. Ciruela, F., Curr. Opin. Biotechnol., 2008, vol. 19, pp. 338–343.

    Article  CAS  PubMed  Google Scholar 

  2. Loening, A.M., Wu, A.M., and Gambhir, S.S., Nat. Methods, 2007, vol. 4, pp. 641–643.

    Article  CAS  PubMed  Google Scholar 

  3. De, A., Jasani, A., Arora, R., and Gambhir, S.S., Front. Endocrinol. (Lausanne), 2013, vol. 4, p. 131.

    Article  Google Scholar 

  4. De, A., Loening, A.M., and Gambhir, S.S., Cancer Res., 2007, vol. 67, pp. 7175–7183.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim, Y.R., Kim, S., Choi, J.W., Choi, S.Y., Lee, S.H., Kim, H., Hahn, S.K., Koh, G.Y., and Yun, S.H., Theranostics, 2015, vol. 5, pp. 805–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saito, K., Chang, Y.-F., Horikawa, K., Hatsugai, N., Higuchi, Y., Hashida, M., Matsuda, T., Arai, Y., and Nagai, T., Nat. Communs., 2012, vol. 3, p. 1262.

    Article  CAS  Google Scholar 

  7. Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M.B., Benink, H.A., Eggers, C.T., Slater, M.R., Meisenheimer, P.L., Klaubert, D.H., Fan, F., Encell, L.P., and Wood, K.V., ACS Chem. Biol., 2012, vol. 7, pp. 1848–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kamkaew, A., Sun, H., England, C.G., Cheng, L., Liu, Z., and Cai, W., Chem. Communs. (Camb.), 2016, vol. 52, pp. 6997–7000.

    Article  CAS  Google Scholar 

  9. Zdobnova, T.A., Lebedenko, E.N., and Deyev, S.M., Acta Naturae, 2011, vol. 3, pp. 29–47.

    Article  CAS  Google Scholar 

  10. Schaub, F.X., Reza, M.S., Flaveny, C.A., Li, W., Musicant, A.M., Hoxha, S., Guo, M., Cleveland, J.L., and Amelio, A.L., Cancer Res., 2015, vol. 75, pp. 5023–5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shramova, E.I., Proshkina, G.M., Deyev, S.M., and Petrov, R.V., Dokl. Biochem. Biophys, 2017, vol. 474, pp. 228–230.

    Article  CAS  PubMed  Google Scholar 

  12. Shramova, E.I., Proshkina, G.M., Chumakov, S.P., Khodarovich, Y.M., and Deyev, S.M., Acta Naturae, 2016, vol. 8, pp. 118–123.

    Article  CAS  Google Scholar 

  13. Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, Y., Ellisman, M.H., and Tsien, R.Y., PLoS Biol., 2011, vol. 9, e1001041.

    Google Scholar 

  14. Eidne, K.A., Kroeger, K.M., and Hanyaloglu, A.C., Trends Endocrinol. Metab., 2002, vol. 13, pp. 415–421.

    Article  CAS  PubMed  Google Scholar 

  15. Pfleger, K.D. and Eidne, K.A., Nat. Methods, 2006, vol. 3, pp. 165–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Shramova.

Additional information

Original Russian Text © E.I. Shramova, S.M. Deyev, G.M. Proshkina, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 6, pp. 664–668.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shramova, E.I., Deyev, S.M. & Proshkina, G.M. Efficiency of Bioluminescence Resonance Energy Transfer in the NanoLuc-miniSOG-Furimazine System. Russ J Bioorg Chem 44, 755–758 (2018). https://doi.org/10.1134/S1068162018060080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018060080

Keywords

Navigation